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Abstract

Let X be a manifold on which a discrete (pseudo)group of diffeomorphisms Γ
acts, and let E be a Γ-equivariant vector bundle on X. We give a construction of
cyclic cocycles on the cross product algebra C∞0 (X)o Γ representing the equivari-
ant characteristic classes of E. Our formulas can be viewed as a higher-dimensional
analogue of Connes’ Godbillon-Vey cyclic cocycle. An essential tool for our con-
struction, which allows us to overcome difficulties arising in the higher-dimensional
case, is Connes-Moscovici’s theory of cyclic cohomology of Hopf algebras.

1 Introduction

In the paper [4] A. Connes provided an explicit construction of the Godbillon-
Vey cocycle in cyclic cohomology. The goal of this paper is to give a similar
construction for higher secondary classes.

First, let us recall Connes’ construction. Let M be a smooth oriented mani-
fold and let Γ ⊂ Diff+(M) be a discrete group of orientation-preserving dif-
feomorphisms of M . Let ω be a volume form on M . Define the following
function on M × Γ: δ(g) = ωg

ω
, where the superscript denotes the group ac-

tion. Then one can define a one-parametric group of diffeomorphisms of the
algebra A = C∞0 (M)o Γ by

φt(aUg) = aδ(g)itUg (1.1)

This is the Tomita-Takesaki group of automorphisms, associated to the weight
on A given by ω.

Consider now the transverse fundamental class –the cyclic q-cocycle on A
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given by

τ(a0Ug0 , a1Ug1 , . . . , aqUgq) =
1
q!

∫
M
a0da

g0
1 da

g0g1
2 . . . da

g0g1...gq−1
q if g0g1 . . . gq = 1

0 otherwise
(1.2)

To study the behavior of this cocycle under the 1-parametric group (1.1),
consider the “Lie derivative” L acting on the cyclic complex by Lξ = d

dt
|t=0φ

∗
t ξ,

ξ being a cyclic cochain. It turns out that in general τ is not invariant under
the group (1.1), and that Lτ 6= 0.

However, it was noted by Connes that one always has

Lq+1τ = 0 (1.3)

and that Lqτ is invariant under the action of the group (1.1). One deduces
from this that if ιδ is the analogue of the interior derivative (see [4]), then
ιδLqτ is a cyclic cocycle.

This is Connes’ Godbillon-Vey cocycle. It can be related to the Godbillon-
Vey class as follows. Let [GV ] ∈ H∗(MΓ) be the Godbillon-Vey class, where
MΓ = M ×Γ EΓ is the homotopy quotient. Connes defines a canonical map
Φ : H∗(MΓ)→ HP ∗(A). Then one has

Φ([GV ]) = [ιδLqτ ] (1.4)

The class of this cocycle is independent of the choice of the volume form. To
prove this one can use Connes’ noncommutative Radon-Nicodym theorem to
conclude that if one changes the volume form, the one-parametric group φt
remains the same modulo inner automorphisms.

A natural problem then is to extend this construction to cocycles correspond-
ing to other secondary characteristic classes. It was noted by Connes [5] that
if instead of a 1-dimensional bundle of q-forms on M one considers Γ equivari-
ant trivial bundle of rank n, then in place of the 1-parametric group (1.1) one
encounters a coaction of the group GLn(R) on the algebra A. The difficulty
is that for n > 1 this group is not commutative, and one cannot replace this
coaction by the action of the dual group, similarly to (1.1).

In this paper we show that the Connes-Moscovici theory of cyclic cohomol-
ogy for Hopf algebras (cf [6,7]) provides a natural framework for the higher-
dimensional situation and allows one to give a construction of the secondary
characteristic cocycles.
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The situation we consider is the following. We have an orientation-preserving
action of a discrete group (or pseudogroup) Γ on the oriented manifold M ,
and a trivial bundle E on M that is equivariant with respect to this action.
Well-known examples in which such a situation arises are the following (cf.
[5], [16],[6]). Let V be a manifold on which a discrete group (or pseudogroup)
G acts, and let E0 be a bundle (not necessarily trivial) on V , equivariant with
respect to the action of G. Let Ui, i ∈ I, be an open covering of V such that
the restriction of F on each Ui is trivial. Put M = tUi, and let E be the
pull-back of E0 to M by the natural projection. Then we have an action of the
following pseudogroup Γ on M : Γ = {gi,j| g ∈ G i, j ∈ I}∪id, where Dom gi,j =
g−1 (Uj) ∩ Ui ⊂ Ui, Ran gi,j = g (Ui) ∩ Uj ⊂ Uj, and the natural composition
rules hold. The bundle E is clearly equivariant with respect to this action. Our
construction, described below, provides classes in the cyclic cohomology of the
cross-product algebra C∞0 (M) o Γ, rather than in the cyclic cohomology of
C∞0 (V )oG. However, the cross-product algebras C∞0 (M)oΓ and C∞0 (V )oG
are Morita equivalent, and hence have the same cyclic cohomology.

Another natural example is provided by a manifold V with a foliation F , and
a bundle E0 which is holonomy equivariant. We can always choose a complete
(possibly disconnected) transversal M , such that the restriction E of E0 to
M is trivial. Let Γ be the holonomy pseudogroup acting on M . E is clearly
equivariant with respect to this action. In this case again the cross-product
algebra C∞0 (M) o Γ is Morita equivalent to the full algebra of the foliation
C∞0 (V, F ).

We then construct a map from the cohomology of the truncated Weil algebra
(cf. e.g. [14]) W (g, On)q to the periodic cyclic cohomology HP ∗(A) of the al-
gebra A = C∞0 (M) o Γ. The construction is the following. We consider the
action of the differential graded Hopf algebra H (GLn(R)) of differential forms
on the group GLn(R) on the differential graded algebra Ω∗0(M) o Γ, where
Ω∗0(M) denotes the algebra of compactly supported differential forms on M .
The use of differential graded algebras allows one to conveniently encode dif-
ferent identities, similar to (1.3). We then show that Connes-Moscovici theory
(or rather a differential graded version of it) allows one to define a map from
the cyclic complex of H (GLn(R)) to the cyclic complex of Ω∗0(M)o Γ. After
this we the relate cyclic complex of H (GLn(R)) to the Weil algebra, and the
cyclic cohomology of Ω∗0(M)o Γ to the cyclic cohomology of A.

It would be interesting to extend the methods of this paper to the situation
of nontrivial bundles, and obtain the answer involving connections and curva-
tures, as done for the primary classes in [12,13]. It would also be interesting to
relate our constructions with the work of E. Getzler [10], where Hopf algebra
of differential forms on Lie group is used to give construction of equivariant
characteristic classes for noncompact Lie groups.

3



The paper is organized as follows. In the next two sections we discuss cyclic
complexes for differential graded algebras and differential graded Hopf alge-
bras respectively. In section 4 we show that two different Hopf actions, which
coincide “modulo inner automorphisms”, induce the same Connes-Moscovici
characteristic map in cyclic cohomology and discuss some other properties of
the characteristic map. In section 5 we construct the action of H (GLn(R))
on Ω∗0(M) o Γ. In section 6 we relate cyclic complex of the Hopf algebra
H (GLn(R)) with the Weil algebras. Finally, in section 7 we prove an ana-
logue of formula (1.4) for the cocycles we construct.

I would like to thank D. Burghelea and H. Moscovici for many helpful discus-
sions.

2 Cyclic complex for differential graded algebras

In this section we collect some preliminary standard facts about cyclic coho-
mology of differential graded algebras, and give cohomological version of some
results of [11].

Recall that a cyclic module X∗ is given by a cosimplicial module with the face
maps δi : Xn−1 → Xn and degeneracy maps σi : Xn → Xn−1 0 ≤ i ≤ n,
satisfying the usual axioms. In addition, we have for each n an action of Zn+1

on Xn, with the generator τn, satisfying

τnδi = δi−1τn−1 for 1 ≤ i ≤ n and τnδ0 = δn (2.1)

τnσi = σi−1τn+1 for 1 ≤ i ≤ n and τnσ0 = σnτ
2
n+1 (2.2)

τn+1
n = id (2.3)

For every cyclic object one can construct operators b : Xn → Xn+1 and
B : Xn → Xn−1, defined by the formulas

b =
n∑
j=0

(−1)jδj (2.4)

B =

n−1∑
j=0

(−1)j(n−1)τ jn−1

σn+1(1− (−1)n−1τn) (2.5)

where

σn+1 = σnτn+1 (2.6)
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These operators satisfy

b2 = 0 (2.7)

B2 = 0 (2.8)

bB +Bb = 0 (2.9)

Hence for any cyclic object X∗ we can construct a bicomplex B∗,∗(X) as fol-
lows: Bp,q, p, q ≥ 0 is Xp−q, or 0 if p < q, and the differential Bp,q → Bp+1,q

(resp. Bp,q+1) is given by b (resp. B). By removing the restriction p, q ≥ 0 we
obtain a periodic bicomplex Bper. Notice that it has periodicity induced by
the tautological shift S : Bp,qper → Bp+1,q+1

per .

Now let Ω∗ be a unital positively graded algebra. We can associate with it a
cyclic object as follows (the differential d is not used in this definition).

Let Ck(Ω∗) be the space of continuous (k + 1)-linear functionals on Ω∗. The
face and degeneracy maps are given by

(δjφ)(a0, a1, . . . , ak+1) =φ(a0, . . . , ajaj+1, . . . , ak+1) for 0 ≤ j ≤ n− 1

(δnφ)(a0, a1, . . . , ak+1) =(−1)deg ak+1(deg a0+···+deg ak)φ(ak+1a0, a1, . . . ak) (2.10)

(σjφ)(a0, . . . , ak−1) = φ(a0, . . . , aj, 1, aj+1, . . . ak−1) (2.11)

and the cyclic action is given by

(τkφ)(a0, . . . , ak) = (−1)deg ak(deg a0+... deg ak−1)φ(ak, a0, . . . , ak−1) (2.12)

Cohomology of the total complex of the bicomplex B (resp. Bper) where we
consider only finite cochains, is the cyclic (resp. periodic cyclic) cohomology
of Ω∗, which we denote HC∗(Ω∗) (resp. HP ∗(Ω∗)).

Suppose now that Ω∗ is a differential graded (DG) algebra with the differential
of degree 1. We say that φ ∈ Ck(Ω∗) has weightm if φ(a0, a1, . . . , ak) = 0 unless
deg a0 + deg a1 + · · · + deg ak = m. We denote by Ck,p(Ω∗) ⊂ Ck(Ω∗) set of
weight (−p) functionals. Notice that in this case each Ck(Ω∗) is a complex in
its own right, with grading defined above, and with differential (−1)kd, where
we extend d to Ck(Ω∗) by

dφ(a0, a1, . . . , ak) =
k∑
j=0

(−1)deg a0+... deg aj−1φ(a0, . . . , daj, . . . , ak) (2.13)

Then db − bd = 0, dB − Bd = 0, and hence in this situation B and Bper be-
come actually tricomplexes. Cyclic (resp. periodic cyclic) cohomology of the
DG algebra (Ω∗, d) is then defined as the cohomology of the total complex
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of the tricomplex B (resp. Bper), where we consider only finite cochains. No-
tations for the cyclic and periodic cyclic cohomologies are HC∗ ((Ω∗, d)) and
HP ∗ ((Ω∗, d)).

One can show that cyclic cohomology can be computed by the normalized
complex, i.e. one where cochains satisfy

φ(a0, a1, . . . , ak) = 0 if ai = 1, i ≥ 1 (2.14)

We will need the following result about the cyclic cohomology.

Theorem 1 Let A = Ω0 be the 0-degree part of Ω∗ (which we consider as
a trivially graded algebra with the zero differential). We then have a natural
map of (total) complexes I : Bper(A) → Bper ((Ω∗, d)) (extension of multi-
linear forms by 0 to Ω∗). Then the induced map in cohomology HP ∗(A) →
HP ∗ ((Ω∗, d)) is an isomorphism.

To prove the theorem and to write an explicit formula for the map R :
Bper ((Ω∗, d)) → Bper(A), inducing the inverse isomorphism in the periodic
cyclic cohomology, we need the following fact (Rinehart formula) which we
use as stated in [11].

Let D be a derivation of the graded algebra Ω∗ of degree degD, i.e. a linear
map D : Ω∗ → Ω∗+degD satisfying

D(ab) = (Da)b+ (−1)degD deg aaD(b) (2.15)

It defines an operator on the complex B(Ω∗), by

LDφ(a0, a1, . . . , ak) =
k∑
i=0

(−1)degD(a0+···+ai−1)φ(a0, . . . , D(ai), . . . , ak) (2.16)

which commutes with both b and B. The action of this operator on the peri-
odic cyclic bicomplex is homotopic to zero, with the homotopy constructed as
follows. Define operators eD : Ck−1(Ω∗)→: Ck(Ω∗), ED : Ck+1(Ω∗)→ Ck(Ω∗)
by

eDφ(a0, a1, . . . ak) = λφ(D(ak)a0, a1 . . . , ak−1) (2.17)

EDφ(a0, a1, . . . ak) = µ
∑

1≤i≤j≤k
φ(1, ai, ai+1, . . . , aj−1, Daj, . . . , ak, a0, . . . )

(2.18)

where

λ = (−1)k+1+deg ak(deg a0+···+deg ak−1) (2.19)

µ = (−1)ik+1+(deg ai+... deg ak)(deg a0+... deg ai−1)+degD(deg ai+... deg aj) (2.20)
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Then

[b+B, eD + ED] = LD (2.21)

We now proceed with the proof of the Theorem 1

Proof of the Theorem 1 Consider the derivation D of degree 0 given by
Da = (deg a)a. On the multilinear form of weight m D acts by m. Define the
homotopy h to be 1

m
(eD + ED) on the forms of weight m > 0 and 0 on the

forms of weight 0. We define map of complexes R : Bper ((Ω∗, d)) → Bper(A)
by

Rφ = ck,m(dh)mφ for φ ∈ Ck,m (2.22)

where

ck,m = (−1)km+m2−m
2 (2.23)

This is a map of (total) complexes. Indeed, using identities (b+B)h+h(b+B) =
id and (b+B)d− d(b+B) = 0, we have:

(b+B)Rφ−R(b+B + (−1)kd)φ =

ck,m
(
((b+B)(dh)m − (−1)m(dh)m(b+B)) + (−1)m(dh)m−1d

)
φ =

ck,m
(
−(−1)m(dh)m−1d+ (−1)m(dh)m−1d

)
φ = 0 (2.24)

It is clear that

R ◦ I = id (2.25)

We denote by ∂ = b+B±d the total differential in the complex Bper ((Ω∗, d)),
where we denote by ±d (−1)kdacting on Ck,m, Then for I ◦R we have

I ◦R = id− (∂ ◦H +H ◦ ∂) (2.26)

and the homotopy H is given by the formula

Hφ =
m−1∑
j=0

ck,jh(dh)jφ for φ ∈ Ck,m (2.27)

This equality can be verified by direct computation as follows.
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For actions on Ck,−m

H ◦ (b+B) =
m−1∑
j=0

ck,j((dh)j − (b+B)h(dh)j) +
m−1∑
j=1

ck,j(−1)j(hd)j (2.28)

(b+B) ◦H =
m−1∑
j=0

ck,j(b+B)h(dh)j (2.29)

H ◦ (±d) =
m−2∑
j=0

(−1)kck,j(hd)j+1 =
m−1∑
j=1

(−1)kck,j−1(hd)j (2.30)

(±d) ◦H =
m−1∑
j=0

(−1)k−j−1ck,j(dh)j+1 =
m−1∑
j=1

(−1)k−jck,j−1(dh)j (2.31)

and adding these equalities we get the desired result.

Remark 2 We can give another formula for the map induced by R in coho-
mology. Define

R′φ =
ck,m
m!

(ed + Ed)
mφ for φ ∈ Ck,−m (2.32)

where as before

ck,m = (−1)km+m2−m
2 (2.33)

Then it is easy to see that R′ defines a map of complexes and R′ ◦ I = id, and
hence R′ and R induce the same map in cohomology.

We now consider an analogue of the notion of Connes’ cycle over a differential
graded algebra. Let (Ω∗, d) be a differential graded algebra. A cycle C of degree
p ∈ Z over (Ω∗, d) is given by the following data:

(1) Bigraded bidifferential algebra (C∗,∗, δ, δ̄), δ : Ci,j → Ci+1,j , δ̄ : Ci,j →
Ci,j+1. Here δ, δ̄ must be differentials of C∗,∗ satisfying

δ2 = 0, δ̄2 = 0, δδ̄ + δ̄δ = 0. (2.34)

We use the following notation: for α ∈ Ci,j degα = i + j, deg′ α = i,
deg′′ α = j, and ∂ = δ + δ̄. Notice that ∂2 = 0, due to (2.34).

(2) Homomorphism of DG algebras

ρ : (Ω∗, d)→ (C0,∗, δ̄) (2.35)

(3) A finite collection of linear functionals {
∫
k} on Ck,−p+k, k ≥ max{0, p}
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(extended by 0 to all C∗,∗) such that∫
k
δα = 0 for all k (2.36)∫
k
[α, β] = (−1)degα

∫
k+1

δ̄(αδβ) for α ∈ C∗,∗, β ∈ C0,∗ (2.37)

With such a cycle one can associate its character, which is a p-cocycle in
B ((Ω∗, d)). Its component in Ck,p−k is given by

χkC(ω0, ω1, . . . , ωk) = (−1)

k∑
i=0

(k−i) degωi
∫
k
ρ(ω0)δρ(ω1) . . . δρ(ωk) (2.38)

One verifies by a direct computation that

BχkC = 0 (2.39)

bχkC + dχk+1
C = 0 (2.40)

Hence {χkC} is indeed a cocycle in the complex B ((Ω∗, d)). Note that this
cocycle has a property of cyclicity, i.e. all of its component satisfy

φ(ω0, ω1, . . . , ωk) = (−1)k+degωk(degω0+... degωk−1)φ(ωk, ω0, . . . , ωk−1) (2.41)

One shows, as in Connes [3] (this material can also be found in [5], III.1.α) ,
that one can compute cyclic cohomology using the complex of cyclic cochains.
Moreover, the proof from [3] shows that every cyclic cocycle is a character
of a cycle in the above sense. Cyclic cocycles which are coboundaries can be
interpreted as characters of vanishing cycles, defined as follows (as in [3]).
We say that DG algebra (Ω∗, d) is algebraically contractible if there exist an
automorphism p of (Ω∗, d) and an X ∈M2(Ω∗) with dX = 0 such that

X−1

 a 0

0 p(a)

X =

 0 0

0 p(a)

 (2.42)

A cycle is called vanishing if (C0,∗, δ̄) is algebraically contractible. Note that
Connes’ proof [3] (cf. also [5] p.191) applies without changes and shows that
the cyclic cocycle is a coboundary if and only if it is a character of a van-
ishing cycle. Note also that if (Ω∗, d) is algebraically contractible, then Ω0 is
algebraically contractible as well (as an algebra, and not as DG algebra), and
hence HC∗(Ω0) = 0.

Example 3 We will now describe the map I introduced above in this setting.
Let (Ω∗, d) be a DG algebra, and A = Ω0. Let τ be a cyclic p-cocycle on A.
We will describe its image under the map I : Bper(A) → Bper ((Ω∗, d)) by an
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explicit cycle of degree p over the DG algebra (Ω∗, d). As the algebra C∗,∗ we
take a universal DG algebra Ω∗(Ω∗) of the algebra Ω∗, where we view Ω∗ just
as a graded algebra, and not DG algebra. (I.e. it is an algebra spanned by the
expressions of the form α0δα1 . . . δαr, where αq ∈ Ω∗. The product, as usual,
is defined so that the relation δ(αα′) = δ(α)α′ + (−1)degααδα′ holds, and the
differential is defined by δ(α0δα1 . . . δαr) = δα0δα1 . . . δαr). The bigrading is
introduced by putting α0δα1 . . . δαr ∈ Ci,j if and only if r = i and degα0 +
degα1 + . . . degαr = j. The differential δ is already defined. We define the
graded differential δ̄ so that δ̄α = dα for α ∈ Ω∗, and relations (2.34) hold,
i.e.

δ̄(α0δα1 . . . δαr) =

dα0δα1 . . . δαr +
r∑
q=1

(−1)degα0+... degαq−1+qα0δα1 . . . δ(dαq) . . . δαr (2.43)

Finally we define {
∫
k} as follows.

∫
k is nonzero only if k = p, and in this

case it is a functional on Cp,0. Cp,0 is spanned by the elements of the form
a0δa1 . . . δap, ai ∈ A, and we define∫

p
a0δa1 . . . δap = τ(a0, a1, . . . , ap) (2.44)

It is now straightforward to verify that the data above indeed defines a cycle
over (Ω∗, d), whose character is Iτ .

Our goal now is to describe explicitly the image of the character of a cycle
under the isomorphism R : HP ∗ ((Ω∗, d))→ HP ∗(A), A = Ω0.

Theorem 4 Let the cyclic cocycle {χkC} be a character of a cycle C
(
C∗,∗, δ, δ̄,

∫ )
.

Then [Rχ] ∈ HP ∗(A) is the class of the cocycle in the (b, B) bicomplex given
by

Φk
C(a0, a1, . . . a2k−p) =

k!

(−p+ 2k + 1)!

2k−p∑
i=0

(−1)i(m−i)
∫
k
∂ρ(ai+1) . . . ∂ρ(a2k−p)ρ(a0) . . . ∂ρ(ai). (2.45)

PROOF. First we note that ΦC is indeed a cocycle. This is verified by a direct
computation, which can be found in [5], pp. 220-221. Next, we need to show
that the cocycle ΦC constructed from the vanishing cycle C is cohomologous
to 0. This do this notice that ΦC is a pull back of a cyclic cocycle from C0,0

via the map ρ. As C is a vanishing cycle, HC∗(C0,0) = 0, and the statement
follows.

This shows that the correspondence {χkC} → ΦC is a well defined map R′′ :
HC∗ ((Ω∗, d)) → HC∗(A). Notice that R′′ ◦ I = id, as follows from the de-
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scription of the map I given in Example 3. This, together with the fact that
I : HC∗(A) → HC∗ ((Ω∗, d)) is an isomorphism, implies that R′′ defines a
map HC∗ ((Ω∗, d))→ HC∗(A), which is inverse to I. As I is an isomorphism,
R and R′′ must coincide, and the statement of the theorem follows.

3 Cyclic complex for differential graded Hopf algebras

In this section we reproduce Connes-Moscovici’s construction of the cyclic
module of a Hopf algebra (cf. [6,7]) in the differential graded context.

Let us start with the graded Hopf algebra H∗. We need to fix a modular pair,
i.e. a homomorphism δ : H∗ → C and a group-like element σ ∈ H0. Using
the standard notations for the coproduct and antipode, define the twisted
antipode S̃δ by

S̃δ(h) =
∑

S(h(0))δ(h(1)) (3.1)

Suppose that the following condition holds:

(
σ−1S̃δ

)2
= id (3.2)

Then Connes and Moscovici show that one can define a cyclic object (H∗)] ={
(H∗)⊗n

}
n≥1

as follows. Face and degeneracy operators are given by

δ0(h1 ⊗ . . .⊗ hn−1) = 1⊗ h1 ⊗ . . .⊗ hn−1

δj(h
1 ⊗ . . .⊗ hn−1) = h1 ⊗ . . .⊗∆hj ⊗ . . .⊗ hn for 1 ≤ j ≤ n− 1,

δn(h1 ⊗ . . .⊗ hn−1) = h1 ⊗ . . .⊗ hn−1 ⊗ σ
σi(h

1 ⊗ . . .⊗ hn+1) = h1 ⊗ . . .⊗ ε(hi+1)⊗ . . .⊗ hn+1 (3.3)

The cyclic operators are given by

τn(h1 ⊗ . . .⊗ hn+1) =∑
(−1)

∑
j>i≥0

deg h1
i deg hj (

S̃h1
)

(0)
h2 ⊗ · · · ⊗

(
S̃h1

)
(n−2)

hn ⊗
(
S̃h1

)
(n−1)

σ (3.4)

where (
∆n−1S̃h1

)
=
∑(

S̃h1
)

(0)
⊗ . . .

(
S̃h1

)
(n−1)

It is verified in [7] that the above operations indeed define a structure of a
cyclic module.
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Hence we can define cyclic and periodic cyclic complexes of this cyclic mod-
ule. Suppose now that our Hopf algebra H∗ is a DG Hopf algebra with the
differential d of degree 1. Then complexes B and Bper have an extra differential
defined to be (−1)nd on (H∗)⊗n, where we extend d by

d(h1 ⊗ h2 · · · ⊗ hn) =
n∑
i=1

(−1)deg h1+... deg hi−1

h1 ⊗ h2 . . . dhi · · · ⊗ hn (3.5)

We consider the total complexes of the finite cochains in the resulting tricom-
plexes and define cyclic and periodic cyclic cohomology of DG Hopf algebra
as cohomology of these complexes.

Suppose now that we are given an action π of a differential graded Hopf algebra
H∗ on Ω∗, which agrees with the differential graded structures on H∗ and Ω∗,
i.e. in addition to the general properties of Hopf algebra action we have

deg π(h)(a) = deg h+ deg a (3.6)

d (π(h)(a)) = π(dh)(a) + (−1)deg hπ(h)(da) (3.7)

where h ∈ H∗, a ∈ Ω∗. We will often omit π from our notations and write just
h(a) if it is clear what action we are talking about.

Suppose that
∫
− is a closed graded σ-trace on Ω∗, δ-invariant under the action

of H∗, i.e.

∫
−da = 0 (3.8)∫

−π(h)(a)b =
∫
−aπ

(
S̃h
)
b (3.9)∫

−ab =
∫
−bπ(σ)(a) (3.10)

Then one has a map of cyclic modules χπ : (H∗)] → (Ω∗)], defined by

χπ(h1 ⊗ h2 · · · ⊗ hk)(a0, a1, . . . ak) = λ
∫
−a0π(h1)(a1) . . . π(hk)(ak) (3.11)

where

λ = (−1)

∑
j>i≥0

deg hj deg ai

This map also commutes with the differential d, and hence induces a char-
acteristic map χπ : B(H∗, d) → B(Ω∗, d), as well as corresponding maps in
cohomology.
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4 Properties of the characteristic map

In this section we show that the characteristic map in cohomology does not
change if we twist the Hopf action by a cocycle (see (4.5) for the precise
definition). We also discuss certain truncated version of cyclic complex for
differential graded Hopf algebras.

We will consider now two actions of H∗ on Ω∗ which are conjugated by the
inner automorphism (cf. [15]). We will work under the assumption that Ω∗ is
unital, indicating the changes which need to be made in the nonunital case
in Remark 10. More precisely, let ρ+ and ρ− be two degree-preserving linear
maps from H∗ to Ω∗, which commute with the differentials. We suppose that
they are inverse to each other with respect to convolution:

∑
ρ+(h(0))ρ

−(h(1)) = ε(h)1 (4.1)

and satisfy cocycle identities:

ρ+(hg) =
∑

ρ+(h(0))π(h(1))(ρ
+(g)) (4.2)

ρ−(gh) =
∑

π(h(0))(ρ
−(g))ρ−(h(1)) (4.3)

ρ+(1) = ρ−(1) = ρ+(σ) = ρ−(σ) = 1 (4.4)

Then one can define a new action π′ of H∗ on Ω∗ by

π′(h)(a) =
∑

(−1)deg h(2) deg aρ+(h(0))π(h(1))(a)ρ−(h(2)) (4.5)

Lemma 5 Equation (4.5) defines an action of the DG Hopf algebra H∗ on
the DG algebra Ω∗.

PROOF. We check that all the required properties are satisfied. First

π′(h)(ab) =
∑

(−1)deg abdeg h(2)ρ+(h(0))π(h(1))(ab)ρ
−(h(2)) =∑

(−1)(deg a+deg b) deg h(3)(−1)deg a deg h(2)ρ+(h(0))π(h(1))(a)π(h(2))(b)ρ
−(h(3)) =∑

(−1)(deg a+deg b) deg h(5)(−1)deg a(deg h(2)+deg h(3)+deg h(4))

ρ+(h(0))π(h(1))(a)ρ−(h(2))ρ
+h(3)π(h(4))(b)ρ

−(h(5)) =∑
(−1)deg a deg h(1)π′(h(0))(a)π′(h(1))(b) (4.6)

13



Then

π′(hg)(a) =∑
(−1)deg a(deg h(2)+deg g(3))ρ+(h(0)g(0))π(h(1)g(1))(a)ρ−(h(2)g(2)) =∑

(−1)deg a(deg h(3)+deg g(2)+deg h(4))

ρ+(h(0))π(h(1))(ρ
+(g(0)))π(h(2)g(1))(a)π(h(3))ρ

−(g(2))ρ
−(h(4)) =

π′(h) (π′(g)(a)) (4.7)

Also

π′(h)(1) =
∑

ρ+(h(0))h(1)(1)ρ−(h(3)) = ε(h)1 (4.8)

π′(1)(a) =ρ+(1)aρ−(1) = a (4.9)

and

d (π′(h)(a)) = d
∑

(−1)deg a deg h(3)ρ+(h(0))π(h(1))(a)ρ−(h(2)) =∑
(−1)deg a deg h(3)ρ+(dh(0))π(h(1))(a)ρ−(h(2)) +∑

(−1)deg a deg h(3)+deg h(0)

ρ+(h(0))
(
π(dh(1))(a) + (−1)deg h(1)π(h(1))(da)

)
ρ−(h(2)) +∑

(−1)deg a deg h(3)+deg h(0)+deg h(1)+deg aρ+(h(0))π(h(1))(a)ρ−(dh(2)) =

π′(dh)(a) + (−1)deg hπ′(h)(da) (4.10)

Suppose now that
∫
− is the closed δ-invariant σ-trace for both actions π and

π′. In this case we have two characteristic maps χπ and χπ′ from B(H∗, d) to
B(Ω∗, d). Then we have the following

Proposition 6 Let π and π′ be two actions of H∗ on Ω∗, conjugated by inner
automorphisms, and suppose that they both conditions (3.9),(3.10) are satis-
fied. Let χπ, χπ′ be the corresponding characteristic maps. Then the induced
maps in cohomology HC∗ (H∗, d)→ HC∗ (Ω∗) coincide.

PROOF. Let M2(Ω∗) = Ω∗⊗M2(C) be the differential graded algebra of 2×2
matrices over the algebra Ω∗.We can define an action π2 of H∗ on Ω∗⊗M2(C)
by π2(h)(a⊗m) = π(h)(a)⊗m, where h ∈ H∗, a ∈ Ω∗, m ∈M2(C). Put now

ρ+
2 (h) =

 ρ+(h) 0

0 ε(h)

 ρ−2 (h) =

 ρ−(h) 0

0 ε(h)

 (4.11)
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It is easy to see that ρ+
2 , ρ−2 satisfy equations (4.1)-(4.4), and hence we can

twist the action π2 by ρ+
2 , ρ−2 to define a new action π′2, as in (4.5):

π′2(h)(a⊗m) =
∑

(−1)deg h(2) deg aρ+
2 (h(0))π2(h(1))(a⊗m)ρ−2 (h(2)) (4.12)

Consider now the linear functional
∫
−

2
on M2(Ω∗) defined by

∫
−

2
(a⊗m) =

(∫
−a
)

(trm) (4.13)

Then
∫
−

2
is a closed graded δ-invariant σ-trace on M2(Ω∗) with respect to

the action π′2. Hence we can define the characteristic map χπ′2 : B(H∗, d) →
B (M2(Ω∗), d)

Consider now two imbeddings i, i′ : Ω∗ ↪→M2(Ω∗) defined by

i(a) =

 0 0

0 a

 i′(a) =

 a 0

0 0

 (4.14)

It is easy to see that i∗ ◦χπ′2 = χπ and (i′)∗ ◦χπ′2 = χπ′ . Now to finish the proof
it is enough to recall the well-known fact that i and i′ induce the same map
in cyclic cohomology. Since we will later need an explicit homotopy between
χπ and χπ′ we give the proof below.

Put ut = exp

t
0 −1

1 0


 =

cos t − sin t

sin t cos t

 We define now homotopy be-

tween i and i′ by

it(a) = uti(a)u−1
t =

cos t − sin t

sin t cos t


 0 0

0 a


 cos t sin t

− sin t cos t

 (4.15)

.

Notice that i0 = i, iπ/2 = i′. Consider the family of maps i∗t : B (M2(Ω∗)) →

B (Ω∗). Since we have d
dt
it(a) = [g, it(a)], where g =

0 −1

1 0

 these maps

satisfy d
dt
i∗t = i∗tLg, where Lg : Ck(M2(Ω∗)) → Ck(M2(Ω∗)) is the operator

defined by

Lgφ(x0, . . . , xk) =
k∑
j=0

φ(x0, . . . , [g, xj], . . . , xk)
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Define also an operator Ig : Ck(M2(Ω∗))→ Ck−1(M2(Ω∗)) by

Igφ(x0, . . . , xk−1) =
k−1∑
j=0

φ(x0, . . . , xj, g, xj+1, . . . , xk−1) (4.16)

Then it is easy to verify that [b, Ig] = Lg, [B, Ig] = 0 and [d, Ig] = 0. Hence
Lg = ∂Ig + Ig∂, ∂ = ±d+ b+B. We conclude that i∗1− i∗0 = K∂ + ∂K, where

the homotopy K is given by Kφ =
∫ π/2

0 i∗t Igdt.

Hence

χπ′ − χπ = ∂H +H∂ (4.17)

where

H(h1 ⊗ h2 · · · ⊗ hk)(a0, a1, . . . ak−1) =

Kχπ′2(h1 ⊗ h2 · · · ⊗ hk)(a0, a1, . . . ak−1) =

= (−1)

∑
j>i≥0

deg hj deg ai k−1∑
j=0

∫ π/2

0

∫
− tr it(a0)π′2(h1)(it(a1)) . . .

π′2(hj)(it(aj))π
′
2(hj+1)(g)π′2(hj+2)(it(aj+1)) . . . π′2(hk)(it(ak−1))dt (4.18)

Now note that the complex B (H∗) has a natural weight filtration by subcom-
plexes F lB (H∗, d), where

F lB (H∗, d) = {α1 ⊗ α2 · · · ⊗ αj | degα1 + degα2 + . . . degαj ≥ l} (4.19)

Suppose now that
∫
− has weight q, i.e.

∫
−a = 0 if deg a 6= q (4.20)

Notice that in this case χπ reduces the total degree by q Then following then
proposition is clear:

Proposition 7 The characteristic map is 0 on F lB (H∗) for l > q.

Let B (H∗, d)l denote the truncated cyclic bicomplex:

B (H∗, d)l = B (H∗, d) /F l+1B (H∗, d) (4.21)

Then we immediately have the following

Corollary 8 The characteristic map χπ defined in (3.11) induces the map
from the complex B (H∗, d)q to the cyclic complex of the differential graded
algebra Ω∗.
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This new map will also be denoted χπ. We use the notation

HC∗(H∗, d)l = H∗ (B (H∗, d)l) (4.22)

for the cohomology of the complex B (H∗, d)l. The explicit form of the homo-
topy in the Proposition 6 now implies the following

Corollary 9 Assume that in addition to the conditions of the Proposition
6 the property (4.20) holds. Then the two maps in cohomology induced by
χπ, χπ′ : B (H∗, d)q → B (Ω∗) coincide.

PROOF. We use the notations of the proof of the Proposition 6. There we
established that χπ′ − χπ = ∂H + H∂. We need only to verify that H is well
defined on the quotient complex B (H∗, d)q. But since H = K ◦ χπ′2 , and χπ′2
is easily seen to be 0 on F q+1B (H∗, d), the result follows.

Remark 10 We worked above in the assumption that the DG algebra Ω∗ is
unital. Here we will indicate which modifications should be made to treat the
nonunital case. First of all, ρ+(h), ρ−(h) now don’t have to be elements of the
algebra, but rather multipliers, such that π′ defined in (4.5) is a Hopf action.
We need to require that if m is such a multiplier, then∫

−ma =
∫
−π(σ)(a)m (4.23)

∀a ∈ Ω∗. Then the the Proposition 6 remains true; characteristic maps in this
case take values in the B complex of the algebra Ω∗ with unit adjoined. To
see this, we note that the action π of Hopf algebra H∗ on the algebra Ω∗ can
be extended to the algebra of all multipliers satisfying (4.23); if ρ is such a
multiplier and h ∈ H∗ we define π(h)(ρ) by the formulas

π(h)(ρ)a =
∑

π(h(0))
(
ρπ(S(h(1))a

)
(4.24)

aπ(h)(ρ) =
∑

π(h(1))
(
π(S(h(0))aρ

)
(4.25)

where a ∈ Ω∗. With this definition one can construct actions π2 and π′2 ex-
actly as before. Then homotopy between two characteristic maps is still given
by explicit formula (4.17), which continues to make sense in the nonunital
situation. Actually one needs to use formulas (4.24) only to define π′2(h)(g),

which is easily seen to be

 0 ρ+(h)

−ρ−(h) 0

.

Finally, we collect all the information we will need to use in the next sections.

Theorem 11 Let (Ω∗, d) be a differential graded algebra, and
∫
− a linear func-

tional on Ω∗ of weight q, and let A = Ω0 be the degree 0 part of Ω∗. Let π
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be an action of the DG Hopf algebra H∗ act on the DGA Ω∗. Suppose that∫
− is a δ-invariant σ-trace with respect to π. Then characteristic map (3.11)

defines a map in cohomology HCi(H∗)q → HP i−q(A). Suppose now that π′ is
another action of H∗ on Ω∗, obtained from π by twisting by a cocycle (4.5).

Then if
∫
− is a δ-invariant σ-trace with respect to π′, the maps in cohomology

HCi(H∗)q → HP i−q(A) induced by χπ, χπ′ are the same.

5 Secondary characteristic classes

Let M be a manifold, and let Γ be a discrete pseudogroup of diffeomorphisms
of M , acting from the right.

By this we mean a set Γ such that every element g of Γ defines a local dif-
feomorphism of M , i.e. diffeomorphism g : Dom g → Ran g, where Dom g,
Ran g ⊂ M – open subsets of M , and that we have partially defined opera-
tions of composition and inverse such that

(1) If g ∈ Γ then g−1 : Ran g → Dom g is also in Γ.
(2) If g1, g2 ∈ Γ then g1g2 with domain g−1

1 (Dom g2 ∩ Ran g1) and range
g2 (Dom g2 ∩ Ran g1) is in Γ.

(3) id : M →M is in Γ.

Note that we use a wide definition of pseudogroups, and do not include any
saturation axioms.

Let E be a trivial vector bundle on M , equivariant with respect to the action
of Γ. In other words, every g ∈ Γ defines for every x ∈ Dom g a linear map
Ex → Exg.

For the rest of the paper we suppose the following:

If g1 and g2 ∈ Γ are such that they induce the same diffeomorphisms and the
same action on the bundle, then g1 = g2.

With this data one can associate the following groupoid G: the objects are the
points of M and the morphisms x→ y, x, y ∈M are given by g ∈ Γ such that
g(x) = y, with the composition given by the product in Γ. Let A denote the
convolution algebra of this groupoid, i.e. the cross-product C∞0 (M) o Γ. Let
Ω∗ = (Ω∗(M)o Γ, d) denote the differential graded algebra of forms on G with
the convolution product, where the differential d is the de Rham differential.
We will use the usual cross-product notations ωUg for the elements of this
algebra, where ω ∈ Ω∗(M), g ∈ Γ. Since Γ is, in general a pseudogroup, we
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suppose that

suppω ⊂ Dom g (5.1)

Fix a trivialization of E. The action of Γ on the bundle defines then a homo-
morphism

h : G → GLn(R) (5.2)

Let H (GLn(R)) denote the differential graded Hopf algebra of the forms on
GLn(R), with the product given exterior multiplication, coproduct, antipode
and counit induced respectively by the product GLn(R)×GLn(R)→ GLn(R),
inverse GLn(R)→ GLn(R) and the inclusion 1→ GLn(R). The differential is
given by the de Rham differential on forms.

We now show that the map (5.2) allows one to define an action of H (GLn(R))
on Ω∗.

Proposition 12 The map H (GLn(R))⊗ Ω∗ → Ω∗ given by

π(α)(ω) = h∗(α)ω (5.3)

where α ∈ H (GLn(R)), ω ∈ Ω∗ defines an action of the differential graded
Hopf algebra H (GLn(R)) on the differential graded algebra Ω∗.

PROOF. We have:

π(α1α2)(ω) = h∗(α1α2)ω = h∗(α1)h∗(α2)ω = π(α1) (π(α2)(ω)) (5.4)

Next, if we write ∆α =
∑
k
α(0) ⊗ α(1) we have:

π(α)(ω0ω1)(g) = h∗(α)(g)ω0ω1(g) = h∗(α)(g)
∑

g0g1=g

ω0(g0)ωg0
1 (g1) =∑

g0g1=g

∑
k

h∗(α(0))(g0)h∗(α(1))
g0(g1)ω0(g0)ωg0

1 (g1) =∑
g0g1=g

∑
k

(−1)degω0 degα(0)h∗(α(0))(g0)ω0(g0)h∗(α(2))(g1)ωg0
1 (g1) =∑

k

(−1)degω0 degα(0)π(α(0))(ω0)π(α(1))(ω1) (5.5)
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Also, if M is compact the algebra Ω∗ has a unit given by the function

e(g) =

1 if g is a unit

0 otherwise
(5.6)

Then

π(α)(e) = h∗(α)e = e(α)e (5.7)

Finally, we have

d(π(α(ω))) = d (h∗(α)ω)) =

h∗(dα)ω + (−1)degαh∗(α)dω = π((dα))(ω) + (−1)degαπ(α)(dω) (5.8)

We now have a natural inclusion i : M ↪→ G as the space of units. Then we

define a graded trace
∫
− on Ω∗ by

∫
−ω =

∫
M

i∗ω (5.9)

Proposition 13 The graded trace
∫
− is closed under the de Rham differential

and is invariant under the action of H, i.e.∫
−dω = 0 (5.10)∫
−α(ω) = e(α)

∫
−ω (5.11)

PROOF. The first identity is clear, the second follows from the fact that
h ◦ i : M → GLn(R) is a constant map, taking the value 1.

Hence we have a characteristic map Bq (H (GLn(R)) , d) → B (Ω∗, d) where
q = dimM , which also gives us a map

χ : HC∗q (H (GLn(R)) , d)→ HP ∗ (C∞0 (M)o Γ) (5.12)

Definition of the action of H (GLn(R)) on Ω∗, and hence the definition of the
characteristic map given by (5.12) depends apriori on the choice of trivializa-
tion of E. However, as the following proposition in conjunction with corollary
9 shows, characteristic map is independent of the choice of trivialization.

Proposition 14 Suppose we use another trivialization of E to define an ac-
tion of H (GLn(R)) on Ω∗. Then the two actions are conjugated by the inner
automorphisms.
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PROOF. Let us chose another trivialization of the bundle E, and let U(x)
x ∈M be a transition matrix between the two bases of the fiber Ex. Then we
have a new map h′ : G → GLn(R), related to h by

h′(γ) = U(s(γ))h(γ)U−1(r(γ)) (5.13)

Let π′ denote the action corresponding to the map h′.

Consider now the pull-back U∗ : Ω∗(GLn(R))→ Ω∗(M) as a mapH (GLn(R))→
Ω∗, where we consider forms on M as the form on G which is 0 outside the
space of units. When M is not compact, we obtain not an element in algebra,
but rather a multiplier. Hence we see that if we define

ρ+(α) = U∗(α) (5.14)

and

ρ−(α) = (U−1)∗(α) = ρ+(Sα) (5.15)

we will have

π′(α)(ω) =
∑

(−1)degα(2) degωρ+(α(0))π(α(1))(ω)ρ−(α(2)) (5.16)

We can now summarize the results as follows.

Theorem 15 Let Γ be a discrete pseudogroup acting on the manifold M of di-
mension q by orientation preserving diffeomorphisms. Let E be a Γ-equivariant
trivial bundle of rank n on M . Let H (GLn(R)) be the DG Hopf algebra of the
differential forms on the Lie group GLn(R). Then we have a map

χ : HCi
q(H (GLn(R)) , d)→ HP i−q (C∞0 (M)o Γ) (5.17)

which is independent of the trivialization of E.

We will make this statement more explicit in the next section by identifying
HCi

q(H (GLn(R)) , d).

6 Relation with Weil algebras

In this section we use methods of [14], [17] and [8,9] to identify the cyclic
cohomology HC∗(H (GLn(R)) , d)q. It turns out that

HCi(H (GLn(R)) , d)q =
⊕
m≥0

H i−2m (W (gln, On)q) , (6.1)
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where H∗ (W (gln, On)q) is the cohomology of the truncated Weil algebra (cf.
[14]). As a matter of fact, one can work with the DG Hopf algebra H(G) of
differential forms on any almost connected Lie group, and the result in this
case is

HCi(H(G), d)q =
⊕
m≥0

H i−2m (W (g, K)q) , (6.2)

whereK is the maximal compact subgroup ofG. Computation of the Hochschild
cohomology of this Hopf algebra is essentially contained in [14], and, with a
little care using ideas from [8,9], one recovers the cyclic cohomology.

Let G be a Lie group with finitely many connected components. In the same
manner as in the previous section we can define a differential graded Hopf
algebra H(G) of differential forms on G. Let K be the maximal compact
subgroup ofG. We will now construct the map of complexes from the truncated
relative Weil algebra W (g, K)q to the complex Bq (H(G)).

Let NG denote the simplicial manifold with NGp = G×G× . . . G︸ ︷︷ ︸
p

The sim-

plicial structure is given by the face maps

∂i(g1, g2, . . . , gk) =


(g2, . . . , gk) if i = 0

(g1, g2, . . . gigi+1, . . . , gk) if 1 ≤ i ≤ k − 1

(g1, . . . , gk−1) if i = k

(6.3)

and degeneracy maps

σi(g1, g2, . . . , gk) = (g1, . . . , gi−1, 1, gi, . . . , gk) (6.4)

The geometric realization of this simplicial manifold is the classifying space
BG. It is a union of manifolds ∆p×NGp, modulo the equivalence relation (cf.
[9]). Note also that we have at our disposal an “integration over simplices” map∫
∆

from the de Rham complex of simplicial forms on BG to the simplicial-de

Rham complex of NG.

We will also consider simplicial manifold N̄G, with N̄Gp = G×G× · · · ×G︸ ︷︷ ︸
p+1

.

The face and degeneracy maps are given by

∂i(g0, g1, g2, . . . , gk) = (g0, . . . ĝi, . . . , gk) (6.5)

σi(g0, g1, g2, . . . , gk) = (g0, . . . , gi−1, gi, gi, gi+1, gk) (6.6)

The geometric realization of this simplicial manifold is EG. The map pr :
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N̄G→ NG given by

pr(g0, g1, . . . , gp) = (g0g
−1
1 , g1g

−1
2 , . . . , gp−1g

−1
p ) (6.7)

defines a simplicial principal G-bundle EG → BG. Simplicial manifolds N̄G
and NG moreover have a cyclic structure, i.e. an action of the cyclic groups
Zp+1 on the p-th component, which satisfy all the necessary relations with the
face and degeneracy maps. The actions are given on N̄G by

τp(g0, g1, . . . , gp) = (g1, g2, . . . , gp, g0) (6.8)

Since the maps τp are G-equivariant, they induce corresponding actions on
NG:

τp(g1, g2, . . . , gp) = (g2, g3, . . . , gp, (g1g2 . . . gp)
−1) (6.9)

We will identify the p-cochains for the Hopf algebra H(G) with the forms on
NGp. Under this identification the simplicial structure on the Hopf cochains
corresponds to the one induced by the simplicial structure on NG, the de
Rham differential on the Hopf cochains corresponds to the de Rham differential
on NG, and the cyclic structure on the Hopf cochains is induced by the cyclic
structure on NG. Filtration by the degree of the differential forms on the Hopf
algebra cochains corresponds to the filtration by the degree of the differential
forms on the manifold NG.

We will now construct the map µ from the complex W (g, K) to the simplicial-
de Rham complex of forms on NG, which preserves the filtration on these
complexes, following [9]. We do it by constructing the map from W (g, K) to
the complex of simplicial forms on BG, and then applying the integration map.
The complex of simplicial forms on BG has a natural bigrading. Let θ be the
Maurer-Cartan form on G. Let pi : N̄G = Gp+1 → G be the projection on i-th
component. Consider on EGp the g-valued differential form ω =

∑
tiθi, where

θi = p∗i θ. It defines a simplicial connection in the bundle EG → BG. The
standard construction defines a differential graded algebra homomorphism ψ
from W (g, K) to the complex of K-basic simplicial forms on EG, which we
identify with forms on the space EG/K. This space is a bundle over BG
with fiber G/K. This bundle has a section, which can be explicitly described
as follows. Since G/K has a natural structure of a manifold of nonpositive
curvature, for any finite set of points x0, x1, ..., xk ∈ G/K one can construct
a canonical simplex in G/K, i.e. a map σ(x0, x1, . . . , xk) : ∆k → G/K, with
vertices x0, x1, ..., xk, and this construction agrees with taking faces of a
simplex, and is G-equivariant:

σ(gx0, gx1, . . . , gxk)(t0, t1, . . . , tk) = gσ(x0, x1, . . . , xk)(t0, t1, . . . , tk) (6.10)

Denote by π the canonical projection G→ G/K. Then the section s is given
by the simplicial map defined by the following formula, where we write just σ
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for σ(π(1), π(g1), π(g1g2), . . . π(g1 . . . gk)(t0, t1, . . . , tk):

s(g1, g2, . . . , gk; t0, t1, . . . tk) =(
σ, g−1

1 σ, (g1g2)−1σ, . . . (g1 . . . gk)
−1σ; t0, t1, . . . tk

)
(6.11)

Consider now the map s∗◦ψ. It is clearly a homomorphism from the differential
graded algebra W (g, K) to the differential graded algebra of simplicial forms
on BG. We will show now that it preserves the filtrations on both algebras.
First we need the following statement:

Lemma 16 If ξ is a horizontal form on EG of the type (k, l),then s∗ξ is also
of the type (k, l).

PROOF. Since ξ is horizontal, it can be written as a sum of the expressions
of the form fpr∗ζ, where f is a function, pr : EG→ BG – projection, and ζ is
a form on BG of the type (k, l). Then s∗ (fpr∗ζ) = (s∗f)ζ is also of the type
(k, l).

Proposition 17 The homomorphism s∗ ◦ ψ agrees with the filtrations on the
Weil algebra and on the forms on BG.

PROOF. The curvature of the connection ω is a horizontal form Ω on BG,
given by

Ω =
∑

dtiθi +
∑

tidθi +
∑
i<j

titj[θi, θj]. (6.12)

Hence Ω has only components of the type (1, 1) and (0, 2). The statement of
the lemma will then follow from the fact that s∗Ω also has only components
of the type (1, 1) and (0, 2). But this follows from the Lemma 16.

We can average the map s∗ with respect to the action of symmetric groups
on simplicial manifolds EG/K and BG to obtain a map s̃∗. We can now
apply the integration map and define the map µ from the Weil algebra to the
simplicial-de Rham complex ofNG as µ =

∫
∆ ◦s̃∗◦ψ. Since the integration map

respects filtrations, the resulting map µ also respects filtrations. We identify
the Hochschild complex of H(G) with the simplicial-de Rham complex of NG.
Results of [14], [17] imply that this is actually an isomorphism, i.e.

HH i(H(G), d)q = H i (W (g, K)q) (6.13)
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Notice that the resulting Hochschild cochains are actually cylcic (they are
graded antisymmetric). This implies that Connes’ long exact sequence is equiv-
alent to the collection of short exact sequnces

0→ HCi−2(H(G), d)q
S→ HCi(H(G), d)q

I→
I→ HH i(H(G), d)q → 0, (6.14)

and the map I splits. Hence

HCi(H(G), d)q = ⊕
m≥0

HH i−2m(H(G), d)q =
⊕
m≥0

H i−2m (W (g, K)q) . (6.15)

Explicitly, maps H i−2m (W (g, K)q) → HCi(H(G), d)q are given by Sm ◦ µ,
where we consider µ as a map into the cyclic complex.

We can now formulate a more explicit version of the Theorem 15.

Theorem 18 Let Γ be a discrete pseudogroup acting on the manifold M of di-
mension q by orientation preserving diffeomorphisms. Let E be a Γ-equivariant
trivial bundle of rank n on M . Then our previous constructions define a map

χ :
⊕
m∈Z

H i−2m (W (gln, On)q)→ HP i−q (C∞0 (M)o Γ) (6.16)

7 Relation with other constructions

Suppose, as before, that we have an orientation-preserving action of a discrete
group Γ on an oriented manifold M , and an equivariant trivial bundle E over
M . Then results from previous sections provide us a map H∗(W (g, On)) →
HP ∗(A), where A = C∞0 (M) o Γ. We also have a construction of the map
H∗(W (g, On)) → H∗(MΓ) (see e.g. [14,1,2]), where MΓ = M ×Γ EΓ is the
homotopy quotient when Γ is a group, or more generally, MΓ is the classifying
space BG of the groupoid constructed from the action of Γ on M . In this
section we prove that these constructions are compatible, i.e. that the following
diagram is commutative

H∗(W (g, On)) //

))TTTTTTTTTTTTTTT H∗(MΓ)

Φ
��

HP ∗(A)

(7.1)

where Φ is the canonical map given by Connes [4,5].
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The proof goes as follows. We construct a map Ψ from the complex computing
H∗(MΓ) to the cyclic complex B(Ω∗, d), where Ω∗ = Ω∗0(M) o Γ, which has
the following properties. First, it agrees with the map Φ, in the sense that the
following diagram is commutative:

H∗(MΓ) Φ //

Ψ

))SSSSSSSSSSSSSS HP ∗(A)

HP ∗(Ω∗, d)

R

OO (7.2)

where the map R is defined by (2.22). Then it is clear from the definitions
that the diagram similar to (7.1) is valid with the map Ψ already on the level
of cochains, not just cohomology.

The definition of the map Ψ is the following. Recall that the cohomology of
MΓ can be computed by the following bicomplex C∗,∗. Ck,l denotes the set of
totally antisymmetric functions τ on Γ× Γ · · · × Γ︸ ︷︷ ︸

k+1

with values in −l-currents

on Dom g0 ∩Dom g1 · · · ∩Dom gk, which satisfy the invariance condition

τ(gg0, gg1, . . . , ggk) = τ(g0, g1, . . . , gk)
g−1

. (7.3)

The two differentials of this complex are given by the group cohomology com-
plex differential given on Ck,l by

(d1τ)(g0, g1, . . . , gk, gk+1) = (−1)l
k+1∑
j=0

(−1)jτ(g0, g1, . . . , ĝj, . . . , gk+1) (7.4)

and the de Rham differential d given by

(d2τ)(g0, g1 . . . , gk) = d (τ(g0, g1, . . . , gk)) (7.5)

We now define the map Ψ from the complex C∗,∗ to the cyclic complex
B(Ω∗, d), where Ω∗ = Ω∗0(M)o Γ, by the following formula.

Ψ(τ)(ω0Ug0 , ω1Ug1 , . . . , ωkUgk) =(−1)kl〈τ(1, g0, g0g1, . . . , g0 . . . gk−1), ω0ω
g0
1 . . . ω

g0...gk−1

k 〉 if g0 . . . gk = 1

0 otherwise

(7.6)
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Map Ψ satisfies the following identities

bΨ(τ) = Ψ(d1τ) (7.7)

dΨ(τ) = Ψ(d2τ) (7.8)

BΨ(τ) = 0 (7.9)

and hence it is indeed a map of complexes. It is clear from the definition of
the map Ψ that the diagram obtained from the diagram (7.1) by replacing Φ
by Ψ commutes, even on the level of complexes. It remains to prove that the
map Ψ induces the same map in cohomology as the map Φ.

Theorem 19 The maps Φ and R◦Ψ from H∗(MΓ) to HP ∗(C∞0 oΓ) coincide.

PROOF. This statement follows easily from Theorem 4. Indeed, if {τk} is a
cocycle in the d1, d2 bicompolex. The algebra (C∗,∗, d′, d′′) that Connes defined
in construction of the map Φ defines a cycle over the differential graded algebra
Ω∗(M)o Γ, with ∫

ω ⊗ δg1 . . . δgk = 〈τk(1, g1, . . . , gk), ω〉 (7.10)

It is clear that Ψ(τ) is the character of this cycle, and the result is now
immediate from Theorem 4.
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