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Abstract
This is the first in a series of articles devoted to deformation quantiza-

tion of gerbes. Here we give basic definitions and interpret deformations
of a given gerbe as Maurer-Cartan elements of a differential graded Lie
algebra (DGLA). We classify all deformations of a given gerbe on a
symplectic manifold, as well as provide a deformation-theoretic inter-
pretation of the first Rozansky-Witten class.

1. Introduction

Deformation quantization of Poisson manifolds was first introduced
in [BFFLS]. In the case when M is a symplectic manifold, deformation
quantization of C∞(M) was classified up to isomorphism in [DWL],
[Fe], [D]. In the case of a complex manifold M with a holomorphic
symplectic form, deformation quantizations of the sheaf of algebras
OM are rather difficult to study. They were classified, under additional
cohomological assumptions, in [NT] (Theorem 4.1.6 of the present pa-
per; cf. also [BK] for the algebraic case). All deformation quantizations
of OM were classified by Kontsevich in [K1].

In this paper we start a program of studying deformation quantiza-
tion of stacks and gerbes. Stacks are a natural generalization of sheaves
of algebras. They appear in geometry, microlocal analysis and mathe-
matical physics, cf. [Gi], [Br], [DP], [Ka], [PS], and other works. We
are going to discuss some of the motivations for the present work later
in this introduction.

We start by defining stacks, gerbes and their deformations in the
generality suited for our purposes. We then recall the language of
differential graded Lie algebras (DGLAs) in deformation theory, along
the lines of [D], [Ge], [S], [SS], [Dr], [HS]. After that, given a gerbe
on a Poisson manifold, we define its deformation quantization. We
first classify deformations of the trivial gerbe, i.e. deformations of the
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structure sheaf as a stack, on a symplectic manifold M , C∞ or complex
(Theorem 4.1.1; this result is very close to the main theorem of [P]).
More precisely, we first reduce the classification problem to classifying
certain Q-algebras, using the term of A. Schwarz (or curved DGAs, as
they are called in [Bl]). (The link between these objects and gerbes
was rather well understood for some time; for example, it is through
such objects that gerbes appear in [Kapu]). We also give a new proof
of the classification theorem for deformations of the sheaf of algebra
of functions (Theorem 4.1.6). Then we show how the first Rozansky-
Witten class [RW], [Kap], [K2]) is an obstruction for a certain canonical
deformation of the trivial gerbe to be a sheaf, not just a stack. This
canonical stack is very closely related to stacks of microdifferential
operators defined in [Ka] and [PS].

Next, we show how to interpret deformation quantization of any
gerbe in the language of DGLAs (Theorems 5.1.2 and 5.1.3). The
proof is based on a DGLA interpretation of the deformation theory
of any stack (within our generality); this is done in Theorem 5.3.5.
We show that deformations of a stack are classified by the DGLA of
De Rham-Sullivan forms with coefficients in local Hochschild cochains
of the twisted matrix algebra associated to this stack. (This DGLA
actually is a DGLA of special Hochschild cochains on an associative
DGA; the cyclic homology of this DGA is the natural recipient of the
Chern character of a twisted module over a stack. We will study this
in the sequel).

Afterwards we prove a classification theorem for deformation quan-
tizations of any gerbe on a symplectic manifold (Theorems 6.1.1 and
6.1.2). This can be viewed as an adaptation of Fedosov’s methods [Fe],
[Fe1] to the case of gerbes. Note that some ideas about deformation
quantization of gerbes appeared already in Fedosov’s work; cf. also [K],
as well as [Ka] and [PS].

In subsequent papers we will extend the Kontsevich formality theo-
rem to the gerbe context. In particular, let A be a gerbe on a smooth
manifold. This gerbe defines a cohomology class in H3(M, C). Rep-
resent this class by a closed 3-form H. Recall that a twisted Poisson
structure is a bivector P satisfying

[P, P ] =< H,P ∧ P ∧ P >

(cf. [SW]). A formal weak Poisson structure is a formal series

P =
∑
m≥0

(
√
−1~)m+1Pm
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satisfying the equation above. (In particular, P0 is a usual Poisson
structure). We will prove that deformations of a gerbe A are in one-
to-one correspondence with equivalence classes of formal week Poisson
structures.

Note that Ševera constructed a stack starting from a weak Poisson
structure ([Se]; cf. also [Se1]). So, in effect, we will show that any
deformation quantization of a gerbe comes from Ševera’s construction.

We will also extend the context of the present paper from manifolds
to groupoids. We will also study characteristic classes of perfect com-
plexes over a stack. Those classes will be defined by explicit formulas
in the language of twisted cochains as in [OB], [OTT], [OTT1]. We will
finish by a Riemann-Roch theorem for gerbes and their deformations.

This work is motivated by several goals. First, one can try to general-
ize the Atiyah-Singer index theorem from pseudo-differential to Fourier
integral operators. More precisely, let A be a Fourier integral opera-
tor L2(X1) → L2(X2) whose wave front is a Lagrangian submanifold
L in T ∗(X1 × X2). Fix pseudo-differential projections ei on L2(Xi).
Consider the operator

e2Ae1 : e1L
2(X1) → e2L

2(X2)

Under some assumptions it is possible to extend the usual index the-
oretical program to this case (symbols, ellipticity, Fredholmness), and
to write an Atiyah-Singer type formula for the index of the resulting
operator.

(The presence of the projectors e1, e2 is necessary. Indeed, in the
applications X1 and X2 are of different dimensions. For example, X1

is an affine space, X2 the space of affine subspaces of given dimension,
A the Radon transform, e1 = 1 and e2 the projection to the space of
solutions of the John equations).

The assumptions one has to impose are as follows. First, one requires
the projections of L to T ∗Xi to be of constant rank. In this case the
images of these projections are coisotropic submanifolds Σi. Second,
we require the characteristic foliations on Σi to be fibrations.

If one does not impose this second condition, an index theorem be-
comes harder to formulate. To the characteristic foliations one can
associate groupoids Γi with symplectic forms ωi, as well as stacks de-
forming the trivial gerbes on the bases of the characteristic foliations. It
seems that a higher index theorem for Fourier integral operators in this
generality should rely on an algebraic index theorem for deformation
quantizations of gerbes.

The second goal that motivates this paper is to understand deforma-
tion quantization of the moduli space of flat connections on a Riemann
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surface. This deformation quantization is related, on the one hand, to
jets of differential operators in line bundles on the moduli space and,
on the other hand, to quantum groups and their representations. The
structures mentioned above (twisted Poisson structures and stacks)
play a key role in the geometry of the moduli space, cf. for example
[AKM], [AGS], [AMR], [CF], [RS].

There are other motivations for studying deformation quantization of
gerbes, in particular the role of stacks and gerbes in quantum field the-
ory. For example, Riemann-Roch and index theorems for deformation
quantization of gerbes should lead to generalizations of index theorems
such as in [MMS]. Among the applications other than the index theory,
we would like to mention dualities between gerbes and noncommuta-
tive spaces, as in [Kapu], [Bl], [BBP]. The deformation-theoretical role
of the first Rozansky-Witten class is also quite intriguing and worthy
of further study.

The research of A. G. and B. T. was partially supported by NSF
grants.

2. Stacks and cocycles

2.1. Let M be a smooth manifold (C∞ or complex). In this paper, by
a stack on M we will mean the following data:

1) An open cover M = ∪Ui;
2) a sheaf of rings Ai on every Ui;

3) an isomorphism of sheaves of rings Gij : Aj|(Ui∩Uj)
∼→ Ai|(Ui∩Uj)

for every i, j;
4) an invertible element cijk ∈ Ai(Ui ∩ Uj ∩ Uk) for every i, j, k

satisfying

GijGjk = Ad(cijk)Gik (2.1)

such that, for every i, j, k, l,

cijkcikl = Gij(cjkl)cijl (2.2)

If two such data (U ′
i , A′

i, G′
ij, c′ijk) and (U ′′

i , A′′
i , G′′

ij, c′′ijk) are
given on M , an isomorphism between them is an open cover M = ∪Ui

refining both {U ′
i} and {U ′′

i } together with isomorphisms Hi : A′
i
∼→ A′′

i

on Ui and invertible elements bij of A′
i(Ui ∩ Uj) such that

G′′
ij = HiAd(bij)G

′
ijH

−1
j (2.3)

and

H−1
i (c′′ijk) = bijG

′
ij(bjk)c

′
ijkb

−1
ik (2.4)
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A gerbe is a stack for which Ai = OUi
and Gij = id. In this case cijk

form a two-cocycle in Z2(M,O∗
M).

From a stack defined as above one passes to the following categorical
data:

1) A sheaf of categories Ci on Ui for every i;

2) an invertible functor Gij : Cj|(Ui ∩ Uj)
∼→ Ci|(Ui ∩ Uj) for every

i, j;
3) an invertible natural transformation

cijk : GijGjk|(Ui ∩ Uj ∩ Uk)
∼→ Gik|(Ui ∩ Uj ∩ Uk)

such that, for any i, j, k, l, the two natural transformations from
GijGjkGkl to Gil that one can obtain from the cijk’s are the same on
Ui ∩ Uj ∩ Uk ∩ Ul.

If two such categorical data (U ′
i , C ′i, G′

ij, c′ijk) and (U ′′
i , C ′′i , G′′

ij, c′′ijk)
are given on M , an isomorphism between them is an open cover M =
∪Ui refining both {U ′

i} and {U ′′
i }, together with invertible functors Hi :

C ′i
∼→ C ′′i on Ui and invertible natural transformations bij : HiG

′
ij|(Ui ∩

Uj)
∼→ G′′

ijHj|(Ui ∩ Uj) such that, on any Ui ∩ Uj ∩ Uk, the two natu-

ral transformations HiG
′
ijG

′
jk

∼→ G′′
ijG

′′
jkHk that can be obtained using

Hi’s, bij’s, and cijk’s are the same. More precisely:

((c′′ijk)
−1Hk)(bik)(Hic

′
ijk) = (G′′

ijbjk)(bijG
′
jk) (2.5)

The above categorical data are defined from (Ai, Gij, cijk) as follows:
1) Ci is the sheaf of categories of Ai-modules;
2) given an Ai-module M, the Aj-module Gij(M) is the sheaf M

on which a ∈ Ai acts via G−1
ij (a);

3) the natural transformation cijk between GijGjk(M) and Gjk(M)
is given by multiplication by G−1

ik (c−1
ijk).

From the categorical data defined above, one defines a sheaf of cat-
egories on M as follows. For an open V in M , an object of C(V ) is
a collection of objects Xi of Ci(Ui ∩ V ), together with isomorphisms

gij : Gij(Xj)
∼→ Xi on every Ui ∩ Uj ∩ V , such that

gijGij(gjk) = gikcijk

on every Ui ∩ Uj ∩ Uk ∩ V . A morphism between objects (X ′
i, g

′
ij) and

(X ′′
i , g′′ij) is a collection of morphisms fi : X ′

i → X ′′
i (defined for some

common refinement of the covers), such that fig
′
ij = g′′ijGij(fj).

Remark 2.1.1. What we call stacks is what is referred to in [DP] as
descent data for a special kind of stacks of twisted modules (cf. Remark
1.9 in [DP]). Both gerbes and their deformations are stacks of this



6

special kind. We hope that our terminology, which blurs the distinction
between stacks and their descent data, will not cause any confusion.

Definition 2.1.2. Consider a gerbe given by a two-cocycle c
(0)
ijk. Its

deformation quantization is a stack such that:
1) Ai = OUi

[[~]] as a sheaf, with the multiplication

f ∗ g = fg +
∞∑

m=1

(
√
−1~)mPm(f, g)

where 1∗f = f ∗1 = f and Pm are (holomorphic) bidifferential expres-
sions;

2) Gij(f) = f +
∑∞

m=1(
√
−1~)mTm(f) where Tm are (holomorphic)

differential expressions;

3) cijk =
∑∞

m=0(
√
−1~)mc

(m)
ijk .

An isomorphism between two deformation quantizations is an iso-
morphism (Hi, bij) where

Hi(f) = f +
∞∑

m=1

(
√
−1~)mRm(f)

where Rm are (holomorphic) differential expressions, and

bij = 1 +
∞∑

m=1

(
√
−1~)mb

(m)
ij .

The aim of this paper is to classify up to isomorphism deformation
quantizations of a given gerbe.

3. Differential graded Lie algebras and deformations

3.1. Here we give some definitions at the foundation of the deformation
theory program along the lines of [D], [Ge], [S], [SS], [Dr], [HS]. Let

L =
⊕

m≥−1

Lm

be a differential graded Lie algebra (DGLA). We call a Maurer-Cartan
element an element λ of ~L1[[~]] satisfying

dλ +
1

2
[λ, λ] = 0 (3.1)

A gauge equivalence between two Maurer-Cartan elements λ and µ is
an element G = exp X where X ∈ ~L0[[~]] such that

d + µ = exp adX (d + λ) (3.2)
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Given two gauge transformations G = exp X, H = exp Y between λ
and µ, a two-morphism from G to H is an element c = exp t of ~L−1[[~]]
such that

exp(X) = exp(dt + [µ, t])expY (3.3)

in the prounipotent group exp(~L0[[~]]). The composition of gauge
transformations G and H is the product GH in the prounipotent group
exp~(L0)[[~]]. The composition of two-morphisms c1 and c2 is the prod-
uct c1c2 in the prounipotent group exp~(L−1[[~]]). Here ~L−1[[~]] is
viewed as a Lie algebra with the bracket

[a, b]µ = [a, δb + [µ, b]] (3.4)

We denote the above pronilpotent Lie algebra by ~L−1[[~]]µ. The above
definitions, together with the composition, provide the definition of the
Deligne two-groupoid of L.

Remark 3.1.1. Recently Getzler gave a definition of a Deligne n-groupoid
of a DGLA concentrated in degrees above −n, cf. [G].

Now let L be a sheaf of DGLAs on M . An L-stack on M is the
following data:

1) A Maurer-Cartan element λi ∈ ~L1[[~]] on Ui for every i;

2) a gauge transformation Gij : λj|(Ui ∩Uj)
∼→ λi|(Ui ∩Uj) for every

i, j;
3) a two-morphism

cijk : GijGjk|(Ui ∩ Uj ∩ Uk)
∼→ Gik|(Ui ∩ Uj ∩ Uk)

such that, for any i, j, k, l, the two two-morphisms from GijGjkGkl to
Gil that one can obtain from the cijk’s are the same on Ui∩Uj∩Uk∩Ul.

If two such data (U ′
i , λ′i, G′

ij, c′ijk) and (U ′′
i , λ′′i , G′′

ij, c′′ijk) are given
on M , an isomorphism between them is an open cover M = ∪Ui refining
both {U ′

i} and {U ′′
i }, together with gauge transformations Hi : C ′i

∼→ C ′′i
on Ui and two-morphisms bij : HiG

′
ij|(Ui ∩Uj)

∼→ G′′
ijHj|(Ui ∩Uj) such

that, on any Ui∩Uj∩Uk, the two two-morphisms HiG
′
ijG

′
jk

∼→ G′′
ijG

′′
jkHk

that can be obtained using Hi’s, bij’s, and cijk’s are the same.
Finally, given two isomorphisms (H ′

i, b
′
ij) and (H ′′

i , b′′ij) between the
two data (Ui, λ′i, G′

ij, c′ijk) and (Ui, λ′′i , G′′
ij, c′′ijk), define a two-

isomorphism between them to be a collection of two-morphisms ai :
H ′

i → H ′′
i such that

b′′ij ◦ (ai ◦G′
ij) = (G′′

ij ◦ ai) ◦ b′ij

as two-morphisms from H ′
i ◦G′

ij → G′′
ij ◦H ′′

ij.
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Proposition 3.1.2. A morphism f : L1 → L2 of sheaves of DGLAs
induces a map from the set of isomorphism classes of L1-stacks on M
to the set of isomorphism classes of L2-stacks on M . If f is a quasi-
isomorphism, then the induced map is a bijection.

The proof is standard.

Proposition 3.1.3. Let L be a sheaf of DGLAs such that the sheaf
cohomology H i(M,L) = 0 for i > 0. Then the set of isomorphism
classes of L-stacks on M is in one-to-one correspondence with the set of
isomorphism classes of Maurer-Cartan elements of the DGLA Γ(M,L).

Proof. An L-stack is a datum (λi, Gij, cijk) satisfying (2.1), (2.2),
where λi ∈ MC(L), Gij are in exp(~L0[[~]]) and cijk ∈ exp(~L−1[[~]]λi

).
An isomorphism of two such data is a collection (Hi, bij) satisfying
(2.3), (2.4) where Hi are in exp(~L0[[~]]) and bij ∈ exp(~L−1[[~]]λi

). If
cijk = exp(tijk) and

tijk =
∞∑

m=1

(
√
−1~)mt

(m)
ijk , (3.5)

bij = exp(
∞∑

m=1

(
√
−1~)mu

(m)
ij ), (3.6)

then (2.2) implies

t
(1)
ijk − t

(1)
ijl + t

(1)
ikl − t

(1)
jkl = 0, (3.7)

and (2.4) implies

t
(1)
ijk − t′

(1)
ijk = u

(1)
ij − u

(1)
ik + u

(1)
jk ; (3.8)

but the sheaf L is acyclic, so every stack datum is equivalent to another
datum with tijk = O(~2). Proceeding by induction, we can assume

tijk = O(~m). Now equations (3.7), (3.8) still hold if one replaces t
(1)
ijk

by t
(m)
ijk . By induction, we can replace our orginal datum by a datum

for which tijk = 0.
Proceeding as above, we can find an isomorphism such that bij = 1

between our stack datum and a new datum with cijk = 1 and Gij =
1. Now we have to check when such data are equivalent. Given an
isomorphism (Hi, bij), we observe that by (2.4)

u
(1)
ij − u

(1)
ik + u

(1)
jk = 0;

because L is an acycllic sheaf, we can find y
(1)
i such that

u
(1)
ij = y

(1)
i − y

(1)
j ;
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then exp(
√
−1~y(1)

i ) defines a two-isomorphism between (Hi, bij) and
some (H ′

i, b
′
ij) with b′ij = 1+O(~2). Proceeding by induction, we see that

if two data with cijk = 1 and Gij = 1 are isomorphic, an isomorphism
can be chosen of the form (Hi, bij) with bij = 1. But such data are
precisely Maurer-Cartan elements, and such isomorphisms are their
gauge equivalences.

Definition 3.1.4. For any associative algebra A, let LH(A) be the
Hochschild cochain complex equipped with the Gerstenhaber bracket [Ge].
The standard Hochschild differential is denoted by δ. For the sheaf of al-
gebras C∞

M on a smooth manifold, resp. OM on a complex analytic man-
ifold, let LH

M be the sheaf of Hochschild cochains D(f1, . . . , fn) which
are given by multi-differential, resp. holomorphic multi-differential, ex-
pressions in f1, . . . , fn.

One gets directly from the definitions the following

Lemma 3.1.5. The set of isomorphism classes of deformation quanti-
zations of the trivial gerbe on M is in one-to-one correspondence with
the set of isomorphism classes of LH

M -stacks on M .

3.2. Hochschild cochains at the jet level. For a manifold M , let
J , or JM , be the bundle of jets of smooth, resp. holomorphic, functions
on M . By ∇can we denote the canonical flat connection on the bundle
J . Let C•(J, J) be the bundle of Hochschild cochain complexes of J .
More precisely, the fibre of this bundle is the complex of jets of multi-
differential multi-linear expressions D(f1, . . . , fn). We denote by δ the
standard Hochschild differential.

Proposition 3.2.1. The set of isomorphism classes of deformation
quantizations of the trivial gerbe on M is in one-to-one correspondence
with the set of isomorphism classes of Maurer-Cartan elements of the
DGLA

LH,J(M) = A•(M, C•+1(J, J))

with the differential ∇can + δ. Here by A• we mean C∞ forms with
coefficients in a bundle.

Proof. We have an embedding of sheaves of DGLA:

LH
M → A•

M(C•+1(J, J))

which is a quasi-isomorphism, and the sheaf on the right hand side
has zero cohomology in positive degrees. The proposition follows from
Propositions 3.1.2 and 3.1.3.
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4. Deformation quantization of the trivial gerbe on a
symplectic manifold

4.1. Let (M, ω) be a symplectic manifold (C∞ or complex analytic with
a holomorphic symplectic form). In this section, we extend Fedosov’s
methods from [Fe] to deformations of the trivial gerbe. We say that a
deformation quantization of the trivial gerbe on M corresponds to ω
if, on every Uk, f ∗ g − g ∗ f =

√
−1~{f, g} + o(~) where { , } is the

Poisson bracket corresponding to ω.
Let us observe that the group H2(M, ~C[[~]]) acts on the set of equiv-

alence classes of deformations of any stack: a class γ acts by multiplying
cijk by exp γijk where γijk is a cocycle representing γ.

Theorem 4.1.1. Denote by Def(M, ω) the set of isomorphism classes
of deformation quantizations of the trivial gerbe on M compatible with
the symplectic structure ω. The action of H2(M, ~C[[~]]) on Def(M, ω)
is free. The space of orbits of this action is in one-to-one correspon-
dence with an affine space modelled on the vector space H2(M, C) (in
the C∞ case) or H1(M,OM/C) (in the complex case).

Proof. As in [Fe], we will reduce the proof to a classification prob-
lem for certain connections in an infinite-dimensional bundle of alge-
bras. First, note that in Proposition 3.2.1 we can replace the bundle
of algebras J by the bundle of algebras

grJ =
∏

Sm(T ∗
M).

Indeed, a standard argument shows that they are isomorphic as C∞

bundles of algebras.
Under this isomorphism, the canonical connection ∇can becomes a

connection∇0 on grJ . We are reduced to classifying up to isomorphism
those Maurer-Cartan elements of (A•(M, C•+1(grJ, grJ)),∇0+δ) whose
component in A0(M, C2) is equal to 1

2

√
−1~{f, g} modulo ~. In other

words,these components must be, pointwise, deformation quantizations
of

∏
Sm(T ∗

M) corresponding to the symplectic structure. But all such
deformations are isomorphic to the standard Weyl deformation from
the definition below:

Definition 4.1.2. The Weyl algebra of T ∗
M is the bundle of algebras

W = grJ [[~]] =
∏

Sm(T ∗
M)[[~]]

with the standard Weyl product ∗.
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Moreover, a smooth field of such deformations on M admits a smooth
gauge transformation making it the standard Weyl deformation. There-
fore, we have to classify up to isomorphism those Maurer-Cartan el-
ements of A•(M, C•+1(grJ, grJ)) whose component in the subspace
A0(M, C2) is equal to f ∗ g− fg. Here ∗ is the product in the standard
Weyl deformation.

But such Maurer-Cartan elements are in one-to-one correspondence
with pairs (A, c) where

A ∈ ~A1(M, hom(grJ, grJ))[[~]]; (4.1)

c ∈ ~A2(M, grJ)[[~]], (4.2)

such that, if
∇ = ∇0 + A,

then

∇(f ∗ g) = ∇(f) ∗ g + f ∗ ∇(g); (4.3)

∇2 = ad(c); ∇(c) = 0 (4.4)

Two pairs (A, c) and (A′, c′) are equivalent if one is obtained from the
other by a composition of transformations of the following two types.
a)

(A, c) 7→ (exp(ad(X))(A), exp(ad(X))(c)) (4.5)

where X ∈ ~Der(W );
b)

(A, c) 7→ (A + B, c +∇B +
1

2
[B, B]) (4.6)

where B ∈ ~W .
It is straightforward that the set of Maurer-Cartan elements dis-

cussed above, up to isomorphism, is in one-to-one correspondence with
the set of pairs (A, c) up to equivalence. It remains to show that the
pairs (A, c) are classified as in Theorem 4.1.1.

Let us start with notation. Let

g̃
0 = grJ

be the bundle of Lie algebras of formal power series with the standard
Poisson bracket. Let g0 = grJ/C be the quotient bundle of Lie algebras.
In other words, the fibre of g0 is the Lie algebra of formal Hamiltonian
vector fields on the tangent space. Also, put

g̃ =
1

~
W
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with the bracket a ∗ b− b ∗ a where ∗ is the Weyl product, and

g = g̃/
1

~
C[[~]]

This is the Lie algebra of continuous derivations of the Weyl algebra.
It maps surjectively to g0 via 1

~(f0 + ~f1 + · · · ) 7→ f0. Put |a| = m for
a ∈ Sm(T ∗

M) and |~| = 2. This defines the degree of any monomial in
Sm(T ∗

M)[~]. By g̃0
m we denote the subspace Sm+2(T ∗

M), and by g̃m the
set of 1

~f where f is a polynomial from Sm+2(T ∗
M)[~]. Then

[̃g0
m, g̃

0
r] ⊂ g̃

0
m+r; [̃gm, g̃r] ⊂ g̃m+r;

g̃
0 =

∏
m≥−2

g̃
0
m; g̃ =

∏
m≥−2

g̃m

One defines g0
m and gm accordingly. We have

g
0 =

∏
m≥−1

g
0
m; g =

∏
m≥−1

gm

In particular, the bundle g̃0
−1 = g0

−1 = g̃−1 = g−1 is the cotangent
bundle T ∗

M . The symplectic form identifies this bundle with TM .

Definition 4.1.3. By A−1 we denote the canonical form id ∈ A1(M, TM)
which we view as a form with values in g̃0

−1, etc. under the identifica-
tions above.

The form A−1 is smooth in the C∞ case and holomorphic in the
complex case.

The connection ∇0 can be expressed as

∇0 = A−1 +∇0,0 +
∞∑

k=1

Ak = ∇0,0 + A(−1) (4.7)

where ∇0,0 is an spn-valued connection in the tangent bundle TM and
Ak ∈ A1(M, g0

k). The form A−1 is in fact the canonical form from the
above definition. In the case of a complex manifold, locally ∇0,0 =

∂ + ∂ + A0,0 where A0,0 is a (1, 0)-form with values in spn. The form
A(−1) can be viewed as a g̃0-valued one-form:

A(−1) ∈ A1(M, g̃
0) (4.8)

Let us look for ∇ of the form

∇ = ∇0 +
∞∑

m=0

(
√
−1~)mA(m) (4.9)
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where A(m) ∈ A1(M, g0). The condition ∇2 = o(~) is equivalent to

∇0A
(0) +

1

2
[A(−1), A(−1)]2 = 0 (4.10)

Here we use the notation

a ∗ b− b ∗ a =
∞∑

m=1

(
√
−1~)m[a, b]m

(in particular, [ , ]0 is the Poisson bracket); we then extend the brackets
[a, b]m to forms with values in the Weyl algebra. Since [∇can, [∇can,∇can]] =
0 and [∇0,∇0] = 0, we conclude that

∇0[A
(−1), A(−1)]2 = 0

in A2(M, g̃0). Moreover, observe that the left hand side lies in fact in
A2(M,

∏
m≥0 g̃0

m).

Lemma 4.1.4. If c ∈ Ap(M, g̃0
m), m ≥ −1, satisfies [A−1, c] = 0, then

c = [A−1, c
′] for c′ ∈ Ap−1(M, g̃0

m+1).

Proof. Indeed, the complex A•(M, g̃0) with the differential [A−1, ]
is isomorphic to the complex of smooth sections of, resp, A0,• forms
with coefficients in, the bundle of complexes S[[T ∗

M ]]⊗∧(T ∗
M) with the

standard De Rham differential.
We now know that pairs (∇, c) exist. The theorem is implied by the

following lemma (we use the notation of (4.1)-(4.6)).

Lemma 4.1.5. 1) For any two connections ∇ and ∇′, A(0)−A′(0) is a
cocycle in A1(M, J/C); a pair (∇, c) is equivalent to a pair (∇′, c′) for

some c′ by some transformation (X, B) if and only if A(0) − A′(0) is a
coboundary;

2) for any two pairs (∇, c) and (∇, c′) with the same ∇, c − c′ is a
closed form in A2(M, ~C[[~]]); two such pairs are equivalent if and only
if c− c′ is exact.

Proof. 1) The first statement of 1) follows from (4.10). To prove
the second, note that

∇′ = exp ad(X)(∇) + a d(B),

B ∈ A1(M, ~̃g)

with

X =
∞∑

m=0

(
√
−1~)mX(m)

and X(m) ∈ A0(M, g0), is possible if and only if

∇0X
(0) + A(0) − A′(0) = 0.
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2) The first statement of 2) follows from (4.4). To prove the second,

consider a lifting of ∇ to a g̃-valued connection ∇̃. We have

c = ∇̃2 + θ

where θ ∈ A2(M, ~C[[~]]). One has

∇ = exp ad(X)(∇) + B

if and only if the following two equalities hold:

∇̃ = exp ad(X)(∇̃) + B + α

for some α ∈ A1(M, C[[~]]);

c′ = exp ad(X)(c) + exp ad(X)(B) +
1

2
[B, B].

But in this case

c′ = exp ad(X)(∇̃2 + θ) + [exp ad(X)(∇̃), ∇̃ − exp ad(X)(∇̃)− α]+

1

2
[∇̃ − exp ad(X)(∇̃), ∇̃ − exp ad(X)(∇̃)] =

1

2
[exp ad(X)(∇̃), exp ad(X)(∇̃)]+

θ+[exp ad(X)∇̃, ∇̃]− 1

2
[exp ad(X)(∇̃), exp ad(X)(∇̃)]−dα+

1

2
[∇̃, ∇̃]−

[∇̃, exp ad(X)(∇̃)] +
1

2
[exp ad(X)(∇̃), exp ad(X)(∇̃)] = ∇̃2 + θ − dα

= c− dα

This proves the theorem.

4.1.1. Deformation quantization of the sheaf of functions. Here we
give another proof of a theorem from [NT] (cf. [BK] for the algebraic
case).

Recall that (M, ω) is either a symplectic C∞ manifold or a complex
manifold with a holomorphic symplectic structure. By OM we denote
the sheaf of smooth, resp. holomorphic, functions.

Theorem 4.1.6. Assume that the maps H i(M, C) → H i(M,OM) are
onto for i = 1, 2. Set

H2
F (M, C) = ker(H2(M, C) → H2(M,OM)).

Choose a splitting

H2(M, C) = H2(M,OM)⊕H2
F (M, C).
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The set of isomorphism classes of deformation quantizations of the
sheaf OM compatible with ω is in one-to-one correspondence with a
subset of the affine space

1√
−1~

ω + H2(M, C)[[~]]

whose projection to

1√
−1~

ω + H2
F (M, C)[[~]]

is a bijection.

Proof. First, observe that Lemma 3.1.5 and Proposition 3.2.1 have
their analogs for deformations of the structure sheaf as a sheaf of al-
gebras. The only difference is that the Hochschild complex C•+1 is
replaced everywhere by C•+1, • ≥ 0. Similarly to (4.1)-(4.6), these de-
formations in the symplectic case are classified by forms A ∈ A1(M, ~g)
such that, if ∇ = ∇0 + A, ∇2 = 0. Two such forms are equivalent if,
for X ∈ A0(M, ~g),

∇′ = exp ad(X)∇
To construct a flat connection ∇ , one has to solve recursively

Rn +∇0A
(n+1) = 0 (4.11)

where

Rn =
1

2

∑
i,j≥0 ;i+j+m=n+1

[A(i), A(j)]m

At every stage ∇0Rn = 0; the class of Rn is in the image of the map

H2(M,OM) → H2(M,OM/C)

which is zero under our assumptions.
Therefore flat connections ∇ exist. For any such connection we can

consider its lifting to a g̃-valued connection ∇̃. Put

∇̃2 = θ =
∞∑

m=−1

(
√
−1~)mθm ∈ A2(M,

1

~
C[[~]]) (4.12)

Let us try to determine all possible values of θ. First of all, θ−1 = 1√
−1~ω.

There exists ∇̃ with θ0 = 0 (see (4.10) and the argument after it). To

obtain other possible θ0 we have to add to ∇̃ a form A′(0)−A(0) whose

image in A1(M, J/C) is ∇̃-closed. Therefore, the cohomology class of
a possible θ0 must be in the image of the map

H1(M,OM/C) → H2(M, C),

which is precisely H2
F (M, C) under our assumptions.
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Proceeding by induction, we see that, having constructed θi, i ≤ n,

and ∇̃(n) such that

∇̃2
(n) =

n∑
m=−1

(
√
−1~)mθm + o(~n), (4.13)

we can find θn+1 and ∇̃(n+1) = ∇̃(n) + o(~n) such that

∇̃2
(n+1) =

n+1∑
m=−1

(
√
−1~)mθm + o(~n+1).

The cohomology class of such θn+1 can be changed by adding any ele-
ment of H2

F (M).

Proceeding by induction, we see that we can construct unique ∇̃
with any given projection of θ to H2

F (M)[[~]]. Now observe that, if

∇′ = exp ad(X)∇, then ∇̃′ = exp ad(X)∇̃ + α for α ∈ A1(M, C[[~]])
and therefore θ′ = exp ad(X)(θ) + dα. Therefore two connections with
non-cohomologous curvatures are not equivalent. An inductive argu-
ment, similar to the ones above, shows that two connections with co-
homologous curvatures are equivalent. Indeed, by adding an α we can
arrange for θ′ and θ to be equal. Then we find X =

∑
(
√
−1~)mXm by

induction. At each stage we will have an obstruction in the image of
the map

H1(M,OM) → H1(M,OM/C).

But this image is zero under our assumptions.

4.2. The first Rozansky-Witten class. We have seen in the previ-
ous section that, under the assumptions of Theorem 4.1.6, deformations
of the sheaf of algebras OM are classified by cohomology classes θ as
in (4.13) where θ−1 = 1√

−1~ω; the (non-natural) projection of the set

of all possible classes θ to 1√
−1~ω + H2

F (M, C[[~]]) is a bijection. More

precisely, the (natural) projection of θn+1 to H2(M,OM) is a nonlinear
function in θi, 0 ≤ i ≤ n. We are going to describe this function for
the case n = 0.

Let M be a complex manifold with a holomorphic symplectic struc-
ture ω. We start by describing two ways of constructing cohomology
classes in H2(M,OM). The first one is invented by Rozansky and Wit-
ten, cf. [RW], [Kap], [K2]. Let ∇0,0 be a torsion-free connection in the
tangent bundle which is locally of the form d+A0 for A0 ∈ A1,0(M, sp).
Let R = ∂A0 be the (1, 1) component of the curvature of ∇0,0. We can
view R as a (1, 1) form with coefficients in S2(T ∗

M). Let zi be holomor-
phic coordinates on M. By ẑi we denote the corresponding basis of T ∗

M .
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We write

R =
∑

Rabij ẑ
aẑbdzidzj (4.14)

Put

RWΓ0(M, ω) =
∑

RabijRcdklω
acωbdωikdzjdzl (4.15)

Here Γ0 refers to the graph with two vertices and three edges connect-
ing them. In fact a similar form RWΓ(M, ω) can be defined for any
finite graph Γ for which every vertex has three outgoing edges; the
cohomology class of this form is independent of the connection [RW].

The other way of obtaining (0, 2) classes is as follows. For α =∑
αijdzidzj and β =

∑
βijdzidzj, put

ω(α, β) =
∑

αijβklωikdzjdzl (4.16)

It is straightforward that the above operation defines a symmetric pair-
ing

ω : H1,1(M)⊗H1,1(M) → H0,2(M).

Combined with the projection H2
F (M) → H1,1(M), this gives a sym-

metric pairing

ω : H2
F (M)⊗H2

F (M) → H2(M,OM).

Theorem 4.2.1. Under the assumptions of Theorem 4.1.6, let a de-
formation of the sheaf of algebras OM correspond to a cohomology class

θ =
∑

(
√
−1~)mθm, θm ∈ H2(M).

Then the projection of the class of θ1 to H2(M,OM) is equal to

RWΓ0(M, ω) + ω(θ0, θ0)

Proof. Let us start by observing that one can define the projection

Proj : (A•,•(M, gr J),∇0) → (A0,•(M), ∂) (4.17)

as follows: if I is the DG ideal of the left hand side generated by dzi and
by the augmentation ideal of gr J then the right hand side is identified
with the quotient of the left hand side by I. It is straightforward that
Proj is a quasi-isomorphism.

Using the notation introduced in and after Definition 4.1.3, we can
write

∇0A
(0) +

1

2
[A(−1), A(−1)]2 = θ0 (4.18)
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and

∇0A
(1) +

1

2
[A(−1), A(−1)]3 + [A(−1), A(0)]2 + [A(−0), A(0)]1 = θ1.

(4.19)

Observe that:
a) Proj[A(−1), A(−1)]2 = Proj[A(−1), A(−0)]2 = 0;
b) Proj[A(−1), A(−1)]3 depends only on the (0, 1) component of the

form A
(−1)
1 ;

c) Proj[A(0), A(0)]1 depends only on the (0, 1) component of the form

A
(0)
−1.
The connection ∇0 can be chosen in such a way that the form from

b) is equal to ∑
Rijklẑ

iẑj ẑkdzl; (4.20)

therefore for this connection

1

2
Proj[A(−1), A(−1)]3 = R W Γ0(M, ω).

Since [A(−1), A(−1)]2 ∈ A2(M, g̃≥0), we can choose A(0) ∈ A1(M, g̃≥1);

we conclude, because of b) and c), that there exists ∇̃ with θ0 = 0 such
that the projection of θ1 to H2(M,OM) is equal to R W Γ0(M, ω).

Now we can produce a connection with a given θ0 by adding to the
above connection a form A′−A; for this new connection, the form from
c) may be chosen as ∑

αij ẑ
idzj

where

α =
∑

αijdzidzj

is the (1, 1) component of a form representing the class θ. This implies

P roj[A(0), A(0)]1 = ω(θ0, θ0).

5. Deformations of a given gerbe

5.1. As above, let A be a gerbe on M ; JM is the bundle of algebras
whose fiber at a point is the algebra of jets of C∞, resp. holomorphic,
functions on M at this point; this bundle has the canonical connection
∇can. Horizontal sections of JM correspond to smooth, resp. holomor-
phic, functions.

As above, by OM we will denote the sheaf of smooth functions (in
the C∞ case) or the holomorphic functions (in the complex analytic
case).



19

The two-cocycle cijk defining the gerbe belongs to the cohomology
class in H2(M,OM/2πiZ). Project this class onto H2(M,OM/C).

Definition 5.1.1. We denote the above class in H2(M,OM/C) by
R(A) or simply by R.

The class R can be represented by a two-form R in A2(M, JM/C).

Theorem 5.1.2. Given a gerbe A on a manifold M . The set of defor-
mations of A up to isomorphism is in one-to-one correspondence with
the set of equivalence classes of Maurer-Cartan elements of the DGLA
A•(M, C•+1(JM , JM)) with the differential ∇can + δ + iR.

Here C•+1(JM , JM) is the complex of vector bundles of Hochschild
cochains of the jet algebra; R ∈ A2(M, JM/C) is a form representing
the class from Definition 5.1.1; iR is the Gerstenhaber bracket with the
Hochschild zero-cochain R. Explicitly, if r is an element of an algebra
A,

irD(a1, . . . , an) =
n∑

i=0

(−1)iD(a1, . . . , ai, r, . . . , an).

In Theorem 5.1.2 this operation is combined with the wedge multipli-
cation on forms.

If the manifold M is complex, we can formulate the theorem in terms
of Dolbeault complexes.

Theorem 5.1.3. Given a holomorphic gerbe A on a complex manifold
M . The set of deformations of A up to isomorphism is in one-to-one
correspondence with the set of equivalence classes of Maurer-Cartan
elements of the DGLA A0,•(M, C•+1(OM ,OM)) with the differential
∂ + δ + iR.

Here R ∈ A0,2(M,OM/C) is a form representing the class from Defi-
nition 5.1.1; iR is the Gerstenhaber bracket with the Hochschild zero-
cochain R.

The rest of this section is devoted to the proof of the theorems above.
First, we will construct a DGLA whose Maurer-Cartan elements clas-
sify deformations of any stack (Theorem 5.3.5). In order to that, we
will start by noticing that a stack datum can be defined in terms of the
simplicial nerve of a cover; if we replace the nerve by its first barycentric
subdivision, we arrive at a notion of an L-stack where L is a simplicial
sheaf of DGLAs (Definitions 5.3.2, 5.3.3). We reduce the problem to
classifying such L-stacks in Lemma 5.3.4. Then we replace our sim-
plicial sheaf of DGLAs by a quasi-isomorphic acyclic simplicial sheaf
of DGLAs. For the latter, classifying L-stacks is the same as classify-
ing Maurer-Cartan elements of the DGLA of global sections, whence
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Theorem 5.3.5. It states that deformations of a stack are classified
by Maurer-Cartan elements of local Hochschild cochains of the twisted
matrix algebra.

Then we return to the generality of a gerbe. We start with a coor-
dinate change that replaces twisted matrices by usual matrices, at a
price if making the differential and the transition isomorphisms more
complicated (Lemma 5.3.8). The second coordinate change ((5.13) and
up) allows to get rid of matrices alltogether.

5.2. Twisted matrix algebras. For any simplex σ of the nerve of
an open cover M = ∪Ui corresponding to Ui0 ∩ . . . ∩ Uip , put Iσ =
{io, . . . , ip} and Uσ = ∩i∈IUi. Define the algebra Matrσ

tw(A) whose
elements are finite matrices ∑

i,j∈Iσ

aijEij

such that aij ∈ Ai(Uσ). The product is defined by

aijEij · alkElk = δjlaijGij(ajk)cijkEik

We call a Hochschild cochain D of Matrσ
tw(A) local if:

a) D(Ei1j1 , . . . , Eikjk
) = 0 whenever jp 6= ip+1 for some p between 1

and k − 1;
b) D(Ei1j1 , . . . , Eikjk

) is a factor of Ei1jk
by an element of A.

Local cochains form a DGL subalgebra of all Hochschild cochains
C•+1(Matrσ

tw(A), Matrσ
tw(A)). Denote it by LH,local(Matrσ

tw(A)).

Remark 5.2.1. It is easy to define a sheaf of categories on Uσ whose
complex of Hoschild cochains is exactly the complex of local Hochschild
cochains above.

5.3. De Rham-Sullivan forms. For any p-simplex σ of the nerve of
an open cover M = ∪Ui corresponding to Ui0 ∩ . . . ∩ Uip , let

Q[∆σ] = Q[ti0 , . . . , tip ]/(ti0 + . . . + tip − 1)

and

Ω•[∆σ] = Q[ti0 , . . . , tip ]{dti0 , . . . , dtip}/(ti0+. . .+tip−1, dti0+. . .+dtip)

As usual, define De Rham-Sullivan forms as collections ωσ ∈ Ω•[∆σ]
where σ runs through all simplices, subject to ωτ |∆σ = ωσ on Uτ

whenever σ ⊂ τ . De Rham-Sullivan forms form a complex with the
differential (ωσ) 7→ (dDRωσ). We denote the space of all k-forms by
Ωk

DRS(M).
We need to say a few words about the functoriality of Hochschild

cochains. Usually, given a morphism of algebras A → B, there is
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no natural morphism between C•(A, A) and C•(B, B) (both map to
C•(A, B). Nevertheless, in our special case, there are maps Matrσ

tw →
Matrτ

tw on Uτ if σ ⊂ τ. These maps do induce morphisms of sheaves
of local cochains on the open subset Uτ in the opposite direction; we
call these morphisms the restriction maps. And, as before, we consider
Hochschild cochain complexes already as sheaves of complexes. For
example, in all the cases we are interested in, Hochschild cochains are
given by multidifferential maps.

Definition 5.3.1. Let Ω•
DRS(M,LH,local(Matrtw(A))) be the space of all

collections
Dσ ∈ LH,local(Matrσ

tw(A))⊗ Ωk(∆σ)

such that for σ ⊂ τ the restriction of the cochain Dτ |∆σ to Matrσ
tw(A)

is equal to Dσ on Uτ . These spaces form a DGLA with the bracket
[(Dσ), (Eσ)] = ([Dσ, Eσ]) and the differential (Dσ) 7→ ((dDR + δ)Dσ).

The DGLAs above are examples of a structure that we call a sim-
plicial sheaf of DGLAs.

Definition 5.3.2. A simplicial sheaf L is a collection of sheaves Lσ

on Uσ, together with morphisms of sheaves rστ : Lτ → Lσ on Uτ for all
σ ⊂ τ , such that rστrτθ = rσθ for any σ ⊂ τ ⊂ θ. A simplicial sheaf of
DGLAs L is a simplicial sheaf such that all Lσ are DGLAs and all rστ

are morphisms of DGLAs.

Definition 5.3.3. For a simplicial sheaf of DGLAs L, an L-stack is a
collection of Maurer-Cartan elements λσ ∈ ~L1(Uσ[[~]]), together with
gauge transformations Gστ : rστλτ → λσ on Uτ and two-morphisms
cστθ : Gστrστ (Gτθ) → Gσθ on Uθ for any σ ⊂ τ ⊂ θ, subject to

cστωGστ (rστ (cτθω)) = cσθωcστθ

for any σ ⊂ τ ⊂ θ ⊂ ω.

We leave to the reader the definition of isomorphisms (and two-
isomorphisms) of L-stacks. Given a simplicial sheaf L, one defines the
cochain complex

Cp(L) =
∏

σ0⊂...⊂σp

L(Uσp)

Put

(Ds)σ0...σp+1 = sσ1...σp+1 +

p∑
i=1

(−1)isσ0... bσi...σp+1 + rσp,σp+1(−1)p+1sσ0...σp

We say that L is acyclic if for every q the cohomology of this complex
is zero for p > 0. We say that a morphism of simplicial sheaves of
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DGLAs is a quasi-isomorphism if the induced morphism L(1)
σ → L(2)

σ is
a quasi-isomorphism of complexes of sheaves for any simplex σ. The
analogs of Propositions 3.1.2 and 3.1.3 are true for simplicial sheaves
of DGLAs, with proofs virtually identical.

The collection of sheaves LH,local(Matrσ
tw(A)) forms a simplicial sheaf

of DGLAs if one sets rστ (ω) to be the restriction of the ω to the
algebra Matrσ

tw(A). We denote this simplicial sheaf of DGLAs by
LH,local(Matrtw(A)).

Lemma 5.3.4. Isomorphism classes of deformations of any stack A
are in one-to-one correspondence with isomorphism classes of
LH,local(Matrtw(A))-stacks.

Proof. Given a deformation, it defines a Maurer-Cartan element of
LH,local(Matrσ

tw(A)) for every σ, namely the Hochschild cochain corre-
sponding to the deformed product on Matrtw(A). It is immediate that
this cochain is local. The restriction rστ sends these cochains to each
other, so a deformation of A does define an LH,local-stack. Conversely,
to have an LH,local-stack is the same as to have a deformed stack datum
Ãσ on every Uσ (with respect to the cover by Ui ∩ Uσ = Uσ, i ∈ Iσ),
together with an isomorphism Ãτ → Ãσ on Uτ for σ ⊂ τ and a two-
isomorphism on Uθ for every σ ⊂ τ ⊂ θ. Trivializing the stacks Ãσ

on Uσ, we see that isomorphism classes of such data are in one-to-one
correspondence with isomorphism classes of the following:

1) a deformation Aσ of the sheaf of algebras Ai0 on Uσ where Iσ =
{i0, . . . , ip};

2) an isomorphism of deformations Aτ → Aσ|Uτ for every σ ⊂ τ ;
3) an invertible element of Aσ(Uθ) for every σ ⊂ τ ⊂ θ,
satisfying the equations that we leave to the reader. Finally, one can

establish a one-to-one correspondence between isomorphism classes of
the above data and isomorphism classes of deformations of A. This is
done using an explicit formula utilizing the fact that sequences σ0 ⊂
. . . ⊂ σp are numbered by simplices of the barycentric subdivision of
σp (cf. [Seg]).

Theorem 5.3.5. Isomorphism classes of deformations of any stack A
are in one-to-one correspondence with isomorphism classes of Maurer-
Cartan elements of the DGLA Ω•

DRS(M,LH,local(Matrtw(A))).

(cf. Definition 5.3.1).
Proof. Define the simplicial sheaf of DGLAs as follows. Put

Lσ = Ω•
DRS(∆σ,LH,local(Matrσ

tw(A))),
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with the differential dDR + δ and transition homomorphisms

rστ (Dτ ) = Dτ |∆σ restricted to Matrσ
tw(A).

We denote this simplicial sheaf of DGLAs by

Ω•
DRS(M,LH,local(Matrtw(A))).

It is acyclic as a simplicial sheaf. Therefore, by a simplicial analog of
Proposition 3.1.3, isomorphism classes of stacks over it are in one-to-one
correspondence with isomorphism classes of Maurer-Cartan elements of
the DGLA Ω•

DRS(M,LH,local(Matrtw(A))), because the latter is its zero
degree Čech cohomology. Now, the embedding

LH,local(Matrtw(A))) → Ω•
DRS(M,LH,local(Matrtw(A)))

is a quasi-isomorphism of simplicial sheaves of DGLAs (the left hand
side is the zero degree De Rham cohomology, and the higher De Rham
cohomology vanishes locally). By a simplicial analog of Proposition
3.1.2, isomorphism classes of L-stacks are in one-to-one correspondence
for the two simplicial sheaves of DGLAs above.

Now that we reduced the problem of classifying deformations of a
gerbe to the problem of classifying Maurer-Cartan elements of a DGLA,
our next aim is to simplify this DGLA.

5.3.1. First coordinate change: untwisting the matrices. Recall that
we are working on a manifold M with a coordinate cover {Ui}i∈I and
a Čech two-cocycle cijk with coefficients in O∗

M .
In what follows, we will denote by Ωk(∆σ,O(Uσ)), etc. the space of

smooth forms on the simplex ∆σ with values in O(Uσ), etc.
Locally, c can be trivialized. We assume that the cover is good and

write

cijk = hij(σ)hik(σ)−1hjk(σ) (5.1)

on Uσ for a simplex σ, where hij are elements of Ω0(∆σ,O(Uσ)). As a
consequence,

dDRloghij(σ)− dDRloghik(σ) + dDRloghjk(σ) = 0 (5.2)

Remark 5.3.6. At this stage the cochains hij(σ), ai(σ, τ) can be chosen
to be constant as functions on simplices. But later they will be required
to satisfy Lemma 5.3.10, and for that they have to be dependent on
the variables ti.

Note that two local trivializations of the two-cocycle c differ by a
one-cocycle which is itself locally trivial. Therefore

hij(σ) = ai(σ, τ)hij(τ)aj(σ, τ)−1 (5.3)
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on Uτ where ai are some invertible elements of Ω0(∆σ,O(Uτ )). We have
another local trivialization:

dDRloghij(σ) = βi(σ)− βj(σ) (5.4)

on Uσ, where βi(σ) are elements of Ω1(∆σ,O(Uσ)). Now introduce the
coordinate change

aijEij 7→ aijhij(σ)Eij (5.5)

Definition 5.3.7. By Matrσ(A) we denote the sheaf on Uσ whose el-
ements are finite sums

∑
aijEij where aij ∈ Ai. The multiplication is

the usual matrix product.

One gets immediately

Lemma 5.3.8. Put

a(σ, τ) = diag ai(σ, τ)

and
β(σ) = diag βi(σ)

Consider the spaces of all collections

Dσ ∈ Ωk(∆σ,LH,local(Matrσ(O)))

such that for σ ⊂ τ the restriction of the cochain Dτ |σ to Matrσ(A) is
equal to Ad(a(σ, τ))(Dσ) on Uτ . These spaces form a DGLA with the
bracket [(Dσ), (Eσ)] = ([Dσ, Eσ]) and the differential (Dσ) 7→ ((dDR +
δ+ad(β(σ)))Dσ). The coordinate change (5.5) provides an isomorphism
of this DGLA and the DGLA Ω•

DRS(M,L(Matrtw(A))) from Definition
5.3.1.

5.3.2. Second coordinate change. We have succeeded in replacing the
sheaf of DGLAs of Hochschild complexes of twisted matrices by the
sheaf of DGLAs of Hochschild complexes of usual matrices, at a price
of having more complicated differential and transition functions. Both
involve conjugation (or commutator) with a diagonal matrix. Our next
aim is to make these diagonal matrices have all the entries to be the
same. This will allow us eventually to get rid of matrices altogether.

We already have one such diagonal matrix. Indeed, from (5.4) one
concludes that

dDRβi(σ) = dDRβj(σ) (5.6)

and therefore
dDRβ(σ) ∈ Ω2(∆σ,O(Uσ))

is well-defined. The other one is

γ(σ, τ) = dDRlogai(σ, τ)− βi(σ) + βi(τ) (5.7)
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To see that this expression does not depend on i, apply dDRlog to
(5.3) and compare the result with (5.4). Thus, we have a well-defined
element

γ(σ, τ) ∈ Ω1(∆σ,O(Uτ )).

Also, from (5.3) we observe that

s(σ, τ, θ) = ai(σ, τ)ai(σ, θ)−1ai(τ, θ) (5.8)

does not depend on i and therefore defines an invertible element

s(σ, τ, θ) ∈ Ω0(∆σ,O(Uθ)).

The above cochains form a cocycle in the following sense:

dDR(dDRβ) = 0; (5.9)

dDRβ(σ)− dDRβ(τ) = −dDRγ(σ, τ); (5.10)

γ(σ, τ)− γ(σ, θ) + γ(τ, θ) = dDRlogs(σ, τ, θ); (5.11)

s(σ, τ, θ)s(ρ, τ, θ)−1s(ρ, σ, θ)s(ρ, σ, τ)−1 = 1 (5.12)

Lemma 5.3.9. The cohomology of the Čech bicomplex of the complex

of simplicial sheaves O∗
M

dDRlog−→ Ω1
M . . .

dDR−→ Ω2
M

dDR−→ . . . is isomorphic
to H•(M,O∗

M). Under this isomorphism, the cohomology class of the
cocycle (dDRβ, γ, s) of this complex becomes the cohomology class of the
cocycle cijk.

The proof is straightforward, using the fact that sequences σ0 ⊂
. . . ⊂ σp are numbered by simplices of the barycentric subdivision of
σp (cf. [Seg]; compare with the proof of Lemma 5.3.4).

We need another lemma to prooceed.

Lemma 5.3.10. The cochains ai(σ, τ) can be chosen as follows:

ai(σ, τ) = a0(σ, τ)ãi(σ, τ)

where a0(σ, τ) does not depend on i and ãi(σ, τ) take values in the
subgroup Ω0(∆σ, C · 1)∗.

Proof. Choose local branches of the logarithm. We have from (5.8)

logai(α, σ)−logai(α, τ)+logai(σ, τ)−logs(α, σ, τ) = 2π
√
−1Ni(α, σ, τ)

where Ni(α, σ, τ) are constant integers. The Čech complex of the sim-
plicial sheaf σ 7→ Ω0(∆σ,OUσ) is zero in positive degrees. Let S be a
contracting homotopy from this complex to its zero cohomology. Put

bi(σ) = exp(S(logai(α, σ)));
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then

bi(σ)bi(τ)−1 = ai(σ, τ)−1ãi(σ, τ)a(σ, τ)

where

ãi(σ, τ) = exp(2π
√
−1S(Ni(α, σ, τ)))

and

a(σ, τ) = exp(S(s(α, σ, τ)))

Therefore we can, from the start, replace hij(σ) by bi(σ)hij(σ)bj(σ)−1

in (5.1), and ai(σ, τ) by ãi(σ, τ)a(σ, τ) in (5.3). This proves the lemma.
Now consider the operator

iβ(σ) : Ω•(∆σ, C
•+1(Matr(O))) → Ω•+1(∆σ, C

•(Matr(O)))

This operator acts by the Gerstenhaber bracket (at the level of C•),
combined with the wedge product at the level of Ω•, with the cochain
β(σ) ∈ Ω1(∆σ, C

0(Matr(O))). One has

[δ, iβ(σ)] = adβ(σ) : Ω•(∆σ, C
•(Matr(O))) → Ω•+1(∆σ, C

•(Matr(O)))

and

[dDR, iβ(σ)] = idDRβ(σ) : Ω•(∆σ, C
•+1(Matr(O))) → Ω•+2(∆σ, C

•(Matr(O)))

Now define the second coordinate change as

exp(iβ(σ)) (5.13)

on Ω•(∆σ, C
•(Matr(O))). This coordinate change turns the DGLA

from Lemma 5.3.8 into the following DGLA. Its elements are collections
of elements

ωσ ∈ Ω•(∆σ, C
•(Matrσ(O(Uσ)))) (5.14)

such that the restriction of Dτ |∆σ to the subalgebra Matrσ(O(Uσ)) is
equal to

exp(iβ(σ) − iβ(τ))Ad(a(σ, τ))Dσ; (5.15)

the differential is

dDR + δ + idDRβ(σ) (5.16)

We can replace (5.15) by

exp(iγ(σ,τ) − idDRloga0(σ,τ) − idDRlogea(σ,τ)))Ad(a0(σ, τ))Dσ

(5.17)

where ã(σ, τ) = diag ãi(σ, τ) (cf. Lemma 5.3.10).
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5.4. Getting rid of matrices. Consider the morphism

C•(OUσ) → C•(Matrσ(OUσ)

defined as follows. Put O = O/C. Then for D ∈ Cp(O,O), D : O⊗p →
O, define

D̃(m1a1, . . . , mpap) = m1 . . . mpD(a1, . . . , ap)

where ai ∈ O and mi ∈ M(C). The following is true:

a) the cochains D̃ are invariant under isomorphisms Ad(m) for m ∈
GL(C);

b) the cochains D̃ become zero after substituting and argument from
M(C).

It is well known that the map D 7→ D̃ is a quasi-isomorphism with
respect to the Hochschild differential δ. Therefore this map estab-
lishes a quasi-isomorphism of the DGLA from (5.14), (5.16), (5.15),
(5.17) with the following DGLA: its elements are collections Dσ ∈
Ω•(∆σ, C

•+1(O(Uσ))) such that

Dτ |∆σ = exp(iγ(σ,τ) − idlog a0(σ,τ))Dσ (5.18)

on Uτ , with the differential

dDR + δ + idDRβ(σ). (5.19)

Now consider any cocycle r(σ) ∈ Ω2(Uσ,O/C), t(σ, τ) ∈ Ω1(Uτ ,O/C);

r(σ)− r(τ) + t(σ, τ) = 0;

t(σ, τ)− t(σ, θ) + t(τ, θ) = 0

Such a cocycle defines a of DGLA of collections Dσ as above, where
(5.18) gets replaced by

Dτ |∆σ = exp(it(σ,τ))Dσ (5.20)

and the differential is dDR + δ + ir(σ) If two cocycles differ by the dif-
ferential of u(σ) ∈ Ω1(∆σ,O(Uσ)/C), then operators exp(iu(σ)) define
an isomorphism of DGLAs. Finally, put r(σ) = β(σ) and t(σ, τ) =
γ(σ, τ) − dlog a0(σ, τ). This is a cocycle of Č•(M,AM(O/C)). It lies
in the cohomology class of the cocycle (log s, γ, dDRβ) from Lemma
5.3.9. Now replace this cocycle by a cohomologous cocycle which has
t = 0.

This proves that isomorphism classes of deformations of a gerbe A
are in one-to-one correspondence with isomorphism classes of Maurer-
Cartan elements of the DGLA of collections Dσ ∈ Ω•(∆σ, C

•+1(OUσ ,OUσ)
such that Dσ|Uτ = Dτ ; the differential is dDR + δ + iR where R ∈
Ω2

DRS(M,O/C) represents the class R as defined in the beginning of
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this section. To pass to the DGLA of jets (Theorem 5.1.2) or of Dol-
beault forms (Theorem 5.1.3), we apply Proposition 3.1.2.

6. Deformations of gerbes on symplectic manifolds

6.1. For a gerbe on M defined by a cocycle c, we denote by c the
class of this cocycle in H2(M,OM/2πiZ) and by ∂c its boundary in
H3(M, 2πiZ).

Theorem 6.1.1. Let A be a gerbe on a symplectic manifold (M, ω).
The set of isomorphism classes of deformations of A compatible to ω:

a) is empty if the image of the class ∂c under the map H3(M, 2πiZ) →
H3(M, C) is non-zero;

b) is in one-to-one correspondence with the space Def(M, ω) (Theo-
rem 4.1.1) if the image of the class ∂c under the map H3(M, 2πiZ) →
H3(M, C) is zero.

Let R be the projection of c to H2(M,OM/C), as in Definition 5.1.1.

Theorem 6.1.2. Let A be a gerbe on a complex symplectic manifold
(M, ω). The set of isomorphism classes of deformations of A compat-
ible to ω is:

a) is empty if R 6= 0;
b) is in one-to-one correspondence with the space Def(M, ω) if R =

0.

Proof. The arguments from the proof of Theorem 4.1.1 show that
deformations of a gerbe are classified exactly as in (4.1)-(4.4), with
one exception: equation (4.2) should be replaced by the requirement
that the class of c modulo A2(M, C + ~grJ)[[~]] should coincide with R
where R is a form defined before Theorem 5.1.2. Therefore, if R = 0,
the classification goes unchanged; if R 6= 0 in H2(M,OM/C), then

∇0A
(0) +

1

2
[A(−1), A(−1)]2 = R (6.1)

shows that no connection ∇ exists.
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