MATH 2300 – review problems for Exam 3, part 1

1. Find the radius of convergence and interval of convergence for each of these power series:

(a)
$$\sum_{n=2}^{\infty} \frac{(x+5)^n}{2^n \ln n}$$

Solution: Strategy: use the ratio test to determine that the radius of convergence is 2, so the endpoints are x = -7 and x = -3. At x = -7, we have the series $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n}$, use alternating series test (don't forget to show hypotheses are met)to show that this series converges. At x = -3 we have $\sum_{n=2}^{\infty} \frac{1}{\ln n}$, use term-size comparison test, comparing to $\sum_{n=2}^{\infty} \frac{1}{n}$ to show the series diverges. Interval of convergence is [-7, -3).

(b)
$$\sum_{n=0}^{\infty} \frac{n(x-1)^n}{4^n}$$

Solution: Strategy: use the ratio test to determine that the radius of convergence is 4, so the endpoints are x = -3 and x = 5. At x = -3 we have the series $\sum_{n=0}^{\infty} (-1)^n n$, which we can show diverges by the divergence test. At x = 5 we have the series $\sum_{n=0}^{\infty} n$, which we can also show diverges by the divergence test. The interval of convergence is (-3, 5).

(c)
$$\sum_{n=0}^{\infty} n! (3x+1)^n$$

Solution: Strategy: Use the ratio test to determine the radius of convergence.

$$\lim_{n \to \infty} \frac{(n+1)!(3x+1)^n}{n!(3x+1)^{n+1}} = \lim_{n \to \infty} \frac{n+1}{3x+1} = \infty$$

(provided $3x + 1 \neq 0$). So the radius of convergence is 0. The only "endpoint" is when 3x + 1 = 0, or $x = -\frac{1}{3}$. At this point, the sum becomes $\sum_{n=0}^{\infty} 0$, which converges. So the interval of convergence is actually just a point, $x = -\frac{1}{3}$.

(d)
$$\sum_{n=0}^{\infty} \frac{(-2)^{n+1} x^n}{n^3 + 1}$$

Solution: Strategy: use the ratio test to show the radius of convergence is $\frac{1}{2}$, so the endpoints are $x = -\frac{1}{2}$ and $x = \frac{1}{2}$. At $x = -\frac{1}{2}$ we have the series $-2\sum_{n=0}^{\infty}\frac{1}{n^3+1}$. You can show this converges using term-size comparison, comparing to $\sum_{n=1}^{\infty}\frac{1}{n^3}$. At $x = \frac{1}{2}$ we have the series $\sum_{n=1}^{\infty}\frac{1}{n^3}$.

 $-2\sum_{n=0}^{\infty} \frac{(-1)^n}{n^3+1}$, which we can show converges absolutely by the term-size comparison test. The interval of convergence is [-1/2, 1/2].

(e)
$$\sum_{n=1}^{\infty} \frac{\ln nx^n}{n!}$$

Solution: Again, use the ratio test.

$$\lim_{n \to \infty} \frac{\ln \left(n+1 \right) \cdot x^{n+1} \cdot n!}{\ln n \cdot x^n \cdot (n+1)!} = |x| \cdot \lim_{n \to \infty} \frac{1}{n+1} \cdot \lim_{n \to \infty} \frac{\ln \left(n+1 \right)}{\ln n}.$$

Use L'Hopital's rule on the last limit, we get a limit of $|x| \cdot 0 \cdot 1 = 0$, regardless of the value of x. So the radius of convergence is infinite, and the interval of convergence is $(-\infty, \infty)$ (meaning that the series converges for all x).

2. Let

$$f(x) = \sum_{n=1}^{\infty} \frac{(x+4)^n}{n^2}$$

Find the intervals of convergence of f and f'. For f: [-5, -3]. For f': [-5, -3].

- 3. If $\sum b_n(x-2)^n$ converges at x=0 but diverges at x=7, what is the largest possible interval of convergence of this series? What's the smallest possible? Largest: [-3,7). Smallest: [0,4).
- 4. The power series $\sum c_n(x-5)^n$ converges at x = 3 and diverges at x = 11. What are the possibilities for the radius of convergence? What can you say about the convergence of $\sum c_n$? Can you determine if the series converges at x = 6? At x = 7? At x = 8? at x = 2? At x = -1? At x = -2? At x = 12? At x = -3? The radius of convergence must be between 2 and 6 (inclusive). When we substitute x = 6, we get $\sum c_n$, which must converge since x = 6 is inside the radius of convergence. The series converges at x = 6. The series diverges at x = -2. We don't have enough information to determine convergence at x = 2 or x = 8. We also can't determine convergence at x = -1 or x = 7, which possibly lie right at the edge of the interval of convergence.
- 5. The series $\sum c_n(x+2)^n$ converges at x = -4 and diverges at x = 0. What can you say about the radius of convergence of the power series? What can you say about the convergence of $\sum c_n$? What can you say about the convergence of the series $\sum c_n 2^n$? What can you say about the convergence/divergence of the series at x = -1? At x = -3? At x = 1? At x = -10? This time the radius of convergence must be exactly 2, so the interval of convergence is [-4, 0) When we substitute x = -1 we get $\sum c_n$, which must converge since x = -1 is within the interval of convergence. When we substitute x = 0 we get $\sum c_n 2^n$, which we have been told diverges. The series converges at x = -1 and at x = -3 and diverges at x = 1 and x = 10.
- 6. Say that $f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$. Find f'(x) by differentiating termwise. $f'(x) = \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)x^{2n}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$. Note that $f(x) = \sin x$, and $f'(x) = \cos x$.
- 7. Use any method to find a power series representation of each of these functions, centered about a = 0. Give the interval of convergence (Note: you should be able to give this interval based on your derivation of the series, not by using the ratio test.)

(a)
$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$$

(b)
$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

(c) $\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)}$
(d) $xe^x - x = \sum_{n=1}^{\infty} \frac{x^{n+1}}{n!}$
(e) $\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$
(f) $x \ln(1+3x^2) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{3^n x^{2n+1}}{n}$
(g) $\frac{\sin(-2x^2)}{x} = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{2^{2n+1} x^{4n+1}}{(2n+1)!}$
(h) $\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1}$
(i) $\int \frac{1}{1+x^5} dx = \sum_{n=0}^{\infty} \frac{(-1)^n x^{5n+1}}{5n+1} + C$

8. Determine the function or number represented by the following series:

(a)
$$\sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}$$

(b)
$$\sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2}$$

(c)
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{5^{2n}n!} = e^{x^2/25}$$

(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n} x^{2n+1}}{(2n+1)!} = \frac{1}{2} \sin 2x$$

(e)
$$\sum_{n=1}^{\infty} \frac{x^{2n}}{n} = -\ln(1-x^2)$$

(f)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 3^{2n}}{(2n)!} = \cos(3)$$

•

9. A car is moving with speed 20 m/s and acceleration 2 m/s^2 at a given instant. Using a second degree Taylor polynomial, estimate how far the car moves in the next second. Solution: You should use the Taylor polynomial $P_2(x) = x^2 + 20x + C$ where C is some constant. Then the best estimation for how far the car moves in the next second is

$$P_2(1) - P_2(0) = 21 + C - C = 21$$
 meters

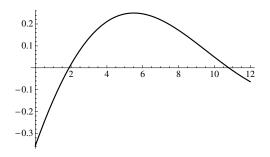
- 10. Estimate $\int_0^1 \frac{\sin t}{t} dt$ using a 3rd degree Taylor Polynomial. What degree Taylor Polynomial should be used to get an estimate within 0.005 of the true value of the integral? (Hint: use the alternating series estimate). Answer: $\frac{17}{18}$. The value is estimated by the series $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)(2n+1)!}$, the *n*th term is less than 0.005 when n = 2, so we must add only two terms, $1 \frac{1}{3\cdot3!}$
- 11. Calculate the Taylor series of $\ln(1+x)$ by two methods. First calculate it "from scratch" by finding terms from the general form of Taylor series. Then calculate it again by starting with the Taylor series for $f(x) = \frac{1}{1-x}$ and manipulating it. Determine the interval of convergence each time.
- 12. Express the integral as an infinite series.

$$\int \frac{e^x - 1}{x} \, dx$$

 $\int \frac{e^x - 1}{x} \, dx = \sum_{n=1}^{\infty} \frac{x^n}{n \cdot n!} + C$

13. Let $f(x) = \frac{1}{1-x}$.

- (a) Find an upper bound M for $|f^{(n+1)}(x)|$ on the interval (-1/2, 1/2). $2^{n+2} \cdot (n+1)!$
- (b) Use this result to show that the Taylor series for $\frac{1}{1-x}$ converges to $\frac{1}{1-x}$ on the interval (-1/2, 1/2). By part (a) and by Taylor's inequality, we have $|R_n(x)| \leq \frac{2^{n+2} \cdot (n+1)!}{(n+1)!} |x|^{n+1} = 2 \cdot (2|x|)^{n+1}$ on (-1/2, 1, 2). But the fact that |x| < 1/2 on this interval tells us that $\lim_{n \to \infty} |R_n(x)| \leq 2 \cdot \lim_{n \to \infty} (2|x|)^{n+1} = 0$ on this interval. But remember that $R_n(x) = f(x) P_n(x)$, where $P_n(x)$ is the *n*th degree Taylor polynomial for f(x). So $P_n(x) \to f(x)$ as $x \to \infty$, and we're done.
- 14. Consider the function y = f(x) sketched below.



Suppose f(x) has Taylor series

$$f(x) = a_0 + a_1(x-4) + a_2(x-4)^2 + a_3(x-4)^3 + \dots$$

about x = 4.

- (a) Is a_0 positive or negative? Please explain $a_0 > 0$, because the function is positive at x = 4.
- (b) Is a_1 positive or negative? Please explain. $a_1 > 0$, because the function is increasing at x = 4.
- (c) Is a_2 positive or negative? Please explain. $a_2 < 0$, because the function is concave down at x = 4.

- 15. How many terms of the Taylor series for $\ln(1+x)$ centered at x = 0 do you need to estimate the value of $\ln(1.4)$ to three decimal places (that is, to within .0005)? We will use the error bound. The error bound corresponding to $P_n(0.4)$ is given by $\frac{M(0.4)^{n+1}}{(n+1)!}$, where M is the maximum of $|f^{n+1}(u)|$ on the interval [0, 0.4]. For $n \ge 1$, the derivatives of $f(x) = \ln(1+x)$ are given by the following formula: $f^n(x) = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}$ Clearly, $|f^{n+1}(u)| = \frac{n!}{(1+u)^{n+1}}$ is decreasing on the interval [0, 0.4], so $M = \frac{n!}{(1+0)^{n+1}} = n!$ The error bound is then $\frac{n!(0.4)^{n+1}}{(n+1)!} = \frac{(0.4)^{n+1}}{n+1}$. The first n for which the error bound is smaller than 0.0005 is n = 6. (Note: sticking strictly to the method of the textbook, you would find the maximum of $|f^{n+1}(u)|$ on the interval [-0.4, 0.4]. In this method, substitute x = -0.4to find the bound M.)
- 16. (a) Find the 4th degree Taylor Polynomial for $\cos x$ centered at $a = \pi/2$. $P_4(x) = -(x - \frac{\pi}{2}) + \frac{1}{6}(x - \frac{\pi}{2})^3$
 - (b) Use it to estimate $\cos(89^\circ)$. $89^\circ = \frac{89\pi}{180}$, so $\cos(89^\circ) \approx -(-\frac{\pi}{180}) + \frac{1}{6}(-\frac{\pi}{180})^3 \approx 0.0174524064$
 - (c) Use Taylor's inequality to determine what degree Taylor Polynomial should be used to guarantee the estimate to within .005. The (n+1)st derivative of $\cos(x)$ is $\pm \sin x$ or $\pm \cos x$, so an upper bound for $f^{(n+1)}(x)$ is M = 1. $|E_n(\frac{89\pi}{180})| \leq \frac{1}{(n+1)!} \left|\frac{89\pi}{180} \frac{90\pi}{180}\right|^{n+1}$. When n = 1 this quantity is < .005, so the first term gives an approximation to within 0.005.
- 17. (a) Find the 3rd degree Taylor Polynomial $P_3(x)$ for $f(x) = \sqrt{x}$ centered at a = 1 by differentiating and using the general form of Taylor Polynomials. Solution:

$$P_3(x) = 1 + \frac{x-1}{2} - \frac{(x-1)^2}{8} + \frac{(x-1)^3}{16}$$

(b) Use the Taylor Polynomial in part (a) to estimate $\sqrt{1.1}$. Solution:

$$\sqrt{1.1} \approx P_3(1.1) = 1.0488125$$

- (c) Use Taylor's inequality to determine how accurate is your estimate is guaranteed to be. **Solution:** $|f^{(4)}(x)| = \frac{15}{16}x^{-7/2}$. This is a decreasing function on the interval [1, 1.1], so its largest value occurs at x = 1. Thus I can use $f(1) = \frac{15}{16}$ for M. By Taylor's inequality, the absolute value of my error is bounded by $\frac{M}{4!}(x-a)^4 = \frac{15}{16\cdot 24}(.1)^4 \approx 3.9 \times 10^{-6}$. (Note: sticking strictly to the method of the textbook, we find the maximum of $|f^{(4)}(x)| = \frac{15}{16}x^{-7/2}$ on the interval [0.9, 1.1]. In this method substitute x = 0.9 to find the bound M.)
- 18. Use Taylor's inequality to find a reasonable bound for the error in approximating the quantity $e^{0.60}$ with a third degree Taylor polynomial for e^x centered at a = 0. We are estimating e^x at x = 0.6. For $f(x) = e^x$, n = 3, a = 0, x = 0.6, Taylor's inequality gives the bound $\frac{Mx^4}{4!}$, where M is the maximum of $|f^4(x)| = |e^x|$ on the interval (0, 0.6). Since $|f^4(x)| = e^x$ is an increasing function, its maximum on this interval occurs at the right-hand endpoint, so $M = e^{0.6}$. The bound is: $\frac{e^{0.6}(0.6)^4}{4!} < \frac{3^{0.6}(0.6)^4}{4!}$. (Note: sticking strictly to the method of the textbook, we would find the maximum of $|f^{(4)}x|$ on the interval (-0.6, 0.6), and the same value of $M = e^{0.6}$ would work.)
- 19. Consider the error in using the approximation $\sin \theta \approx \theta \theta^3/3!$ on the interval [-1, 1]. Where is the approximation an overestimate? Where is it an underestimate?

For $0 \le \theta \le 1$, the estimate is an underestimate (the alternating Taylor series for $\sin \theta$ is truncated after a negative term). For $-1 \le \theta \le 0$, the estimate is an overestimate (the alternating Taylor series is truncated after a positive term).

20. Write down from memory the Taylor Series centered around a = 0 for the functions e^x , $\sin x$, $\cos x$ and $\frac{1}{1-x}$.

 $e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \text{ converges to } e^{x} \text{ on } (-\infty, \infty)$ $\sin x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}, \text{ converges to } \sin x \text{ on } (-\infty, \infty)$ $\cos x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!}, \text{ converges to } \cos x \text{ on } (-\infty, \infty)$ $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n}, \text{ converges to } \frac{1}{1-x} \text{ on } (-1,1)$

- 21. (a) Find the 4th degree Taylor Polynomial for $f(x) = \sqrt{x}$ centered at a = 1 by differentiating and using the general form of Taylor Polynomials. $P_4(x) = 1 + \frac{x-1}{2} - \frac{1}{8}(x-1)^2 + \frac{1}{16}(x-1)^3 - \frac{5}{128}(x-1)^4$
 - (b) Use the previous answer to find the 4th degree T.P. for $f(x) = \sqrt{1-x}$ centered at x = 0. substitute 1-x for x, need 4th degree: $P_4(x) = 1 - \frac{x}{2} - \frac{1}{8}x^2 - \frac{1}{16}x^3 - \frac{5}{128}x^4$
 - (c) Use the previous answer to find the 3rd degree T.P. for $f(x) = \frac{1}{\sqrt{1-x}}$. Differentiate, multiply by -2: $P_3(x) = 1 + \frac{x}{2} + \frac{3}{8}x^2 + \frac{5}{16}x^3$
 - (d) Use the previous answer to find the 3rd degree T.P. for $f(x) = \frac{1}{\sqrt{1-x^2}}$. Substitute x^2 for x: $P_3(x) = 1 + \frac{x^2}{2}$, note that the x^3 term is 0.
 - (e) Use the previous answer to find the 3rd degree T.P. for $f(x) = \arcsin x$. Integrate, substitute to verify that the constant term is 0: $P_3(x) = x + \frac{x^3}{6}$