
MATH 2300 – review problems for Exam 3, part 1

1. Find the radius of convergence and interval of convergence for each of these power series:

(a)
∞∑
n=2

(x+ 5)n

2n lnn

Solution: Strategy: use the ratio test to determine that the radius of convergence is 2, so the

endpoints are x = −7 and x = −3. At x = −7, we have the series
∞∑
n=2

(−1)n

lnn
, use alternating

series test (don’t forget to show hypotheses are met)to show that this series converges. At

x = −3 we have
∞∑
n=2

1

lnn
, use term-size comparison test, comparing to

∞∑
n=2

1

n
to show the series

diverges. Interval of convergence is [−7,−3).

(b)
∞∑
n=0

n(x− 1)n

4n

Solution: Strategy: use the ratio test to determine that the radius of convergence is 4, so the

endpoints are x = −3 and x = 5. At x = −3 we have the series

∞∑
n=0

(−1)nn, which we can show

diverges by the divergence test. At x = 5 we have the series
∞∑
n=0

n, which we can also show

diverges by the divergence test. The interval of convergence is (−3, 5).

(c)
∞∑
n=0

n!(3x+ 1)n

Solution: Strategy: Use the ratio test to determine the radius of convergence.

lim
n→∞

(n+ 1)!(3x+ 1)n

n!(3x+ 1)n+1
= lim

n→∞

n+ 1

3x+ 1
=∞

(provided 3x + 1 6= 0). So the radius of convergence is 0. The only “endpoint” is when
3x + 1 = 0, or x = −1

3 . At this point, the sum becomes
∑∞

n=0 0, which converges. So the
interval of convergence is actually just a point, x = −1

3 .

(d)
∞∑
n=0

(−2)n+1xn

n3 + 1

Solution: Strategy: use the ratio test to show the radius of convergence is 1
2 , so the endpoints

are x = −1
2 and x = 1

2 . At x = −1
2 we have the series −2

∞∑
n=0

1

n3 + 1
. You can show this

converges using term-size comparison, comparing to
∞∑
n=1

1

n3
. At x = 1

2 we have the series

−2

∞∑
n=0

(−1)n

n3 + 1
, which we can show converges absolutely by the term-size comparison test. The

interval of convergence is [−1/2, 1/2].



(e)
∞∑
n=1

lnnxn

n!

Solution: Again, use the ratio test.

lim
n→∞

ln (n+ 1) · xn+1 · n!

lnn · xn · (n+ 1)!
= |x| · lim

n→∞

1

n+ 1
· lim
n→∞

ln (n+ 1)

lnn
.

Use L’Hopital’s rule on the last limit, we get a limit of |x| · 0 · 1 = 0, regardless of the value of x.
So the radius of convergence is infinite, and the interval of convergence is (−∞,∞) (meaning
that the series converges for all x).

2. Let

f(x) =

∞∑
n=1

(x+ 4)n

n2

Find the intervals of convergence of f and f ′. For f : [−5,−3]. For f ′: [−5,−3).

3. If
∑
bn(x − 2)n converges at x = 0 but diverges at x = 7, what is the largest possible interval of

convergence of this series? What’s the smallest possible? Largest: [−3, 7). Smallest: [0, 4).

4. The power series
∑
cn(x− 5)n converges at x = 3 and diverges at x = 11. What are the possibilities

for the radius of convergence? What can you say about the convergence of
∑
cn? Can you determine

if the series converges at x = 6? At x = 7? At x = 8? at x = 2? At x = −1? At x = −2? At
x = 12? At x = −3? The radius of convergence must be between 2 and 6 (inclusive). When we
substitute x = 6, we get

∑
cn, which must converge since x = 6 is inside the radius of convergence.

The series converges at x = 6. The series diverges at x = −2. We don’t have enough information to
determine convergence at x = 2 or x = 8. We also can’t determine convergence at x = −1 or x = 7,
which possibly lie right at the edge of the interval of convergence.

5. The series
∑
cn(x+2)n converges at x = −4 and diverges at x = 0. What can you say about the radius

of convergence of the power series? What can you say about the convergence of
∑
cn? What can you

say about the convergence of the series
∑
cn2n? What can you say about the convergence/divergence

of the series at x = −1? At x = −3? At x = 1? At x = −10? This time the radius of convergence
must be exactly 2, so the interval of convergence is [−4, 0) When we substitute x = −1 we get

∑
cn,

which must converge since x = −1 is within the interval of convergence. When we substitute x = 0
we get

∑
cn2n, which we have been told diverges. The series converges at x = −1 and at x = −3

and diverges at x = 1 and x = 10.

6. Say that f(x) =
∑∞

n=0(−1)n x2n+1

(2n+1)! . Find f ′(x) by differentiating termwise.

f ′(x) =
∑∞

n=0(−1)n (2n+1)x2n

(2n+1)! =
∑∞

n=0(−1)n x2n

(2n)! . Note that f(x) = sinx, and f ′(x) = cosx.

7. Use any method to find a power series representation of each of these functions, centered about
a = 0. Give the interval of convergence (Note: you should be able to give this interval based on your
derivation of the series, not by using the ratio test.)

(a)
1

1 + x
=

∞∑
n=0

(−1)nxn



(b)
1

1 + x2
=
∞∑
n=0

(−1)nx2n

(c) arctanx =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)

(d) xex − x =

∞∑
n=1

xn+1

n!

(e) ln (1 + x) =
∞∑
n=1

(−1)n−1
xn

n

(f) x ln (1 + 3x2) =
∞∑
n=1

(−1)n−1
3nx2n+1

n

(g)
sin (−2x2)

x
=

∞∑
n=0

(−1)n+1 22n+1x4n+1

(2n+ 1)!

(h)
1

(1− x)2
=
∞∑
n=1

nxn−1

(i)

∫
1

1 + x5
dx =

∞∑
n=0

(−1)nx5n+1

5n+ 1
+ C

8. Determine the function or number represented by the following series:

(a)

∞∑
n=1

nxn−1 = 1
(1−x)2

(b)
∞∑
n=1

nxn = x
(1−x)2

(c)

∞∑
n=0

x2n

52nn!
= ex

2/25

(d)
∞∑
n=0

(−1)n22nx2n+1

(2n+ 1)!
= 1

2 sin 2x

(e)

∞∑
n=1

x2n

n
= − ln(1− x2)

(f)

∞∑
n=0

(−1)n32n

(2n)!
= cos(3)

9. A car is moving with speed 20 m/s and acceleration 2 m/s2 at a given instant. Using a second degree
Taylor polynomial, estimate how far the car moves in the next second.
Solution: You should use the Taylor polynomial P2(x) = x2 + 20x+C where C is some constant.
Then the best estimation for how far the car moves in the next second is

P2(1)− P2(0) = 21 + C − C = 21 meters

.



10. Estimate
∫ 1
0

sin t
t dt using a 3rd degree Taylor Polynomial. What degree Taylor Polynomial should be

used to get an estimate within 0.005 of the true value of the integral? (Hint: use the alternating

series estimate). Answer: 17
18 . The value is estimated by the series

∑∞
n=0

(−1)n
(2n+1)(2n+1)! , the nth term

is less than 0.005 when n = 2, so we must add only two terms, 1− 1
3·3!

11. Calculate the Taylor series of ln(1 + x) by two methods. First calculate it “from scratch” by finding
terms from the general form of Taylor series. Then calculate it again by starting with the Taylor
series for f(x) = 1

1−x and manipulating it. Determine the interval of convergence each time.

12. Express the integral as an infinite series. ∫
ex − 1

x
dx

∫
ex−1
x dx =

∑∞
n=1

xn

n·n! + C

13. Let f(x) =
1

1− x
.

(a) Find an upper bound M for |f (n+1)(x)| on the interval (−1/2, 1/2). 2n+2 · (n+ 1)!

(b) Use this result to show that the Taylor series for
1

1− x
converges to

1

1− x
on the interval

(−1/2, 1/2).By part (a) and by Taylor’s inequality, we have |Rn(x)| ≤ 2n+2·(n+1)!
(n+1)! |x|

n+1 =

2·(2|x|)n+1 on (−1/2, 1, 2). But the fact that |x| < 1/2 on this interval tells us that limn→∞ |Rn(x)| ≤
2 · limn→∞(2|x|)n+1 = 0 on this interval. But remember that Rn(x) = f(x)−Pn(x), where Pn(x)
is the nth degree Taylor polynomial for f(x). So Pn(x)→ f(x) as x→∞, and we’re done.

14. Consider the function y = f(x) sketched below.

2 4 6 8 10 12

-0.3

-0.2

-0.1

0.1

0.2

Suppose f(x) has Taylor series

f(x) = a0 + a1(x− 4) + a2(x− 4)2 + a3(x− 4)3 + ...

about x = 4.

(a) Is a0 positive or negative? Please explain.a0 > 0, because the function is positive at x = 4.

(b) Is a1 positive or negative? Please explain. a1 > 0, because the function is increasing at x = 4.

(c) Is a2 positive or negative? Please explain. a2 < 0, because the function is concave down at
x = 4.



15. How many terms of the Taylor series for ln(1+x) centered at x = 0 do you need to estimate the value
of ln(1.4) to three decimal places (that is, to within .0005)? We will use the error bound. The error

bound corresponding to Pn(0.4) is given by
M(0.4)n+1

(n+ 1)!
, where M is the maximum of |fn+1(u)| on

the interval [0, 0.4]. For n ≥ 1, the derivatives of f(x) = ln(1 +x) are given by the following formula:

fn(x) =
(−1)n−1(n− 1)!

(1 + x)n
Clearly, |fn+1(u)| =

n!

(1 + u)n+1
is decreasing on the interval [0, 0.4], so

M =
n!

(1 + 0)n+1
= n! The error bound is then

n!(0.4)n+1

(n+ 1)!
=

(0.4)n+1

n+ 1
. The first n for which the error

bound is smaller than 0.0005 is n = 6. (Note: sticking strictly to the method of the textbook, you
would find the maximum of |fn+1(u)| on the interval [−0.4, 0.4]. In this method, substitute x = −0.4
to find the bound M .)

16. (a) Find the 4th degree Taylor Polynomial for cosx centered at a = π/2.
P4(x) = −(x− π

2 ) + 1
6(x− π

2 )3

(b) Use it to estimate cos(89◦). 89◦ = 89π
180 , so cos(89◦) ≈ −(− π

180) + 1
6(− π

180)3 ≈ 0.0174524064

(c) Use Taylor’s inequality to determine what degree Taylor Polynomial should be used to guarantee
the estimate to within .005. The (n+ 1)st derivative of cos(x) is ± sinx or ± cosx, so an upper

bound for f (n+1)(x) is M = 1.
∣∣En(89π180 )

∣∣ ≤ 1
(n+1)!

∣∣89π
180 −

90π
180

∣∣n+1
. When n = 1 this quantity is

< .005, so the first term gives an approximation to within 0.005.

17. (a) Find the 3rd degree Taylor Polynomial P3(x) for f(x) =
√
x centered at a = 1 by differentiating

and using the general form of Taylor Polynomials.
Solution:

P3(x) = 1 +
x− 1

2
− (x− 1)2

8
+

(x− 1)3

16

(b) Use the Taylor Polynomial in part (a) to estimate
√

1.1.
Solution: √

1.1 ≈ P3(1.1) = 1.0488125

(c) Use Taylor’s inequality to determine how accurate is your estimate is guaranteed to be.
Solution: |f (4)(x)| = 15

16x
−7/2. This is a decreasing function on the interval [1, 1.1], so its

largest value occurs at x = 1. Thus I can use f(1) = 15
16 for M . By Taylor’s inequality, the

absolute value of my error is bounded by M
4! (x− a)4 = 15

16·24(.1)4 ≈ 3.9× 10−6. (Note: sticking

strictly to the method of the textbook, we find the maximum of |f (4)(x)| = 15
16x
−7/2 on the

interval [0.9, 1.1]. In this method substitute x = 0.9 to find the bound M .)

18. Use Taylor’s inequality to find a reasonable bound for the error in approximating the quantity e0.60

with a third degree Taylor polynomial for ex centered at a = 0. We are estimating ex at x = 0.6. For

f(x) = ex, n = 3, a = 0, x = 0.6, Taylor’s inequality gives the bound
Mx4

4!
, where M is the maximum

of |f4(x)| = |ex| on the interval (0, 0.6). Since |f4(x)| = ex is an increasing function, its maximum on

this interval occurs at the right-hand endpoint, so M = e0.6. The bound is:
e0.6(0.6)4

4!
<

30.6(0.6)4

4!
.

(Note: sticking strictly to the method of the textbook, we would find the maximum of |f (4)x| on the
interval (−0.6, 0.6), and the same value of M = e0.6 would work.)

19. Consider the error in using the approximation sin θ ≈ θ − θ3/3! on the interval [−1, 1]. Where is the
approximation an overestimate? Where is it an underestimate?



For 0 ≤ θ ≤ 1, the estimate is an underestimate (the alternating Taylor series for sin θ is truncated
after a negative term). For −1 ≤ θ ≤ 0, the estimate is an overestimate (the alternating Taylor series
is truncated after a positive term).

20. Write down from memory the Taylor Series centered around a = 0 for the functions ex, sinx, cosx
and 1

1−x .

ex =
∑∞

n=0
xn

n! , converges to ex on (−∞,∞)

sinx =
∑∞

n=0(−1)n x2n+1

(2n+1)! , converges to sinx on (−∞,∞)

cosx =
∑∞

n=0(−1)n x2n

(2n)! , converges to cosx on (−∞,∞)
1

1−x =
∑∞

n=0 x
n, converges to 1

1−x on (−1, 1)

21. (a) Find the 4th degree Taylor Polynomial for f(x) =
√
x centered at a = 1 by differentiating and

using the general form of Taylor Polynomials.

P4(x) = 1 + x−1
2 −

1
8(x− 1)2 + 1

16(x− 1)3 − 5
128(x− 1)4

(b) Use the previous answer to find the 4th degree T.P. for f(x) =
√

1− x centered at x = 0.

substitute 1− x for x, need 4th degree: P4(x) = 1− x
2 −

1
8x

2 − 1
16x

3 − 5
128x

4

(c) Use the previous answer to find the 3rd degree T.P. for f(x) = 1√
1−x .

Differentiate, multiply by −2: P3(x) = 1 + x
2 + 3

8x
2 + 5

16x
3

(d) Use the previous answer to find the 3rd degree T.P. for f(x) = 1√
1−x2 .

Substitute x2 for x: P3(x) = 1 + x2

2 , note that the x3 term is 0.

(e) Use the previous answer to find the 3rd degree T.P. for f(x) = arcsinx.

Integrate, substitute to verify that the constant term is 0: P3(x) = x+ x3

6


