Math 2300, Midterm 3 November 16, 2015

PRINT YOUR NAME:		
PRINT INSTRUCTOR'S NAME:		

Mark your section/instructor:

Section 001	Albert Bronstein	9:00 - 9:50
Section 002	Andrew Healy	10:00 - 10:50
Section 003	Joshua Frinak	11:00 - 11:50
Section 004	Kevin Berg	12:00 - 12:50
Section 005	Jeffrey Shriner	2:00 - 2:50
Section 006	Megan Ly	3:00 - 3:50
Section 007	Albert Bronstein	8:00 - 8:50
Section 008	Jonathan Lamar	1:00 - 1:50
Section 009	Keli Parker	3:00 - 3:50
Section 010	Steven Weinell	4:00 - 4:50
Section 011	Benjamin Cooper	8:00 - 8:50
Section 880	Jordan Watts	8:00 - 8:50

nts Score
;
2
2
=
2
2
2
)
0

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit. Use full mathematical or English sentences.
- You have 90 minutes and the exam is 100 points.
- $\bullet~$ You do not need to simplify numerical expressions. For example leave fractions like 100/7~or expressions like ln(3)/2 as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

1. (8 points) Match the following functions with their corresponding Maclaurin series:

(a)
$$e^{x^2/2} = 1$$

$$I. \sum_{n=0}^{\infty} x^{2n}$$

(b)
$$\cos\left(\frac{x}{2}\right) = \underline{\hspace{1cm}}$$

II.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (2n)!}$$

III.
$$\sum_{n=1}^{\infty} nx^{n-1}$$

(c)
$$\frac{1}{(1-x)^2} = \frac{1}{1}$$

IV.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+2}}{2n+1}$$

(d)
$$x \arctan(x) =$$

V.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+2}}{(2n+1)!}$$

$$VI. \sum_{n=0}^{\infty} \frac{x^{2n}}{2^n n!}$$

2. (12 points) (a) Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x-5)^n}{2^n n^2}$. Show all work in justifying your answer.

Ratio Test:
$$\lim_{n\to\infty} \frac{|x-5|^{n+1}}{2^{n+1}(n+1)^2} = \lim_{n\to\infty} \frac{|x-5|^{n}|x-5|}{2 \cdot 2^{n}(n^{2}+2n+1)} = \lim_{n\to\infty} \frac{|x-5|^{n}|x-5|^{n}}{2^{n} n^{2}}$$

$$\lim_{N\to\infty} |x-5| \frac{n^2}{2n^2+4n+2} = \frac{1}{2}|x-5| < 1$$

$$|x-5| < Z - 2 < x-5 < 2$$

$$|x-5| < Z - 3 < x < 7$$

$$R=2$$

$$R=2$$

$$R=2$$

$$R=2$$

(b) Find the $\underline{\text{interval of convergence}}$. Show all work in justifying your answer.

CHECK End points
$$X=3$$
 and $X=7$
 $X=3$: $S=\frac{(3-5)^n}{2^nn^2} = S=\frac{(-2)^n}{2^nn^2} = S=\frac{(-1)^n}{2^nn^2} = S=\frac{(-1)^n}{n=1}$

Converges by AST

 $X=4$ $S=\frac{(7-5)^n}{2^nn^2} = S=\frac{(7-5)^n}{2^nn^2} = S=\frac{(7$

Page 2 of 9

$$y(x+1) + y' = 0$$

that satisfies the initial condition y(-2) = 1. Show all your work and write the solution on the line given below.

Solution:
$$y = \frac{-\frac{1}{2} \times \frac{7}{2}}{2}$$

- 4. (8 points) Given the following power series $\sum_{n=0}^{\infty} a_n(x-2)^n$ we know that at x=0 the series converges and at x = 8 the series diverges. What do we know about the following values?
 - (a) At x = 3 the series $\sum_{n=0}^{\infty} a_n (x-2)^n$ is:

 - (ii) divergent
 - (iii) We cannot determine its convergence/divergence with the information given.
 - (b) At x = -4 the series $\sum_{n=0}^{\infty} a_n (x-2)^n$ is:
 - (i) convergent
 - (ii) divergent
 - (iii) We cannot determine its convergence/divergence with the information given.
 - (c) At x = 9 the series $\sum_{n=0}^{\infty} a_n (x-2)^n$ is:
 - (i) convergent
 - ((ii)) divergent
 - (iii) We cannot determine its convergence/divergence with the information given.
 - (d) The following series $\sum_{n=0}^{\infty} a_n$ is:
 - (i) convergent
 - (ii) divergent
 - (iii) We cannot determine its convergence/divergence with the information given.

5. (12 points) (a) Write the definition for the n^{th} degree Taylor polynomial of f(x) centered at x = a.

$$f''(a) = f'(a) + f'(a)(x-a) + \frac{f''(a)}{z!}(x-a)^{2} + \frac{f''(a)}{z!}(x-a) + \frac{f''(a)}{z!}(x-a)^{4} + \frac{f''(a)}{3!}(x-a) + \frac{f'''(a)}{4!}(x-a)^{4}$$

(b) Find the second degree Taylor polynomial for $f(x) = \ln(\sec(x))$ centered at $\frac{\pi}{4}$.

$$f'(T_4) = L_n \left(\sec(T_4) \right) = L_n \left(T_2 \right) = \frac{1}{2} L_n 2$$

$$f'(x) = \frac{8Cx + can x}{8cc x} = \frac{1}{2} L_n x \qquad f'(T_4) = \frac{1}{2} L_n T_4 = 1$$

$$f''(x) = 8cc^2 x \qquad f''(T_4) = 8cc^2 (T_4) = (T_2)^2 = 2$$

$$f''(x) = \frac{1}{2} L_n 2 + (x - T_4) + \frac{1}{2} (x - T_4)^2$$

$$f''(x) = \frac{1}{2} L_n 2 + (x - T_4) + (x - T_4)^2$$

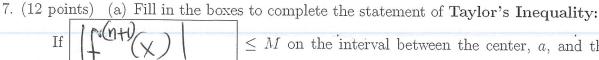
6. (12 points) (a) Express the function $f(x) = \ln(1+x^3)$ as a power series centered about

$$L_{n}(1+X) = \frac{90}{n=1} \frac{(-1)^{n-1} X^{n}}{n}$$

$$L_{n}(1+X^{3}) = \frac{90}{n=1} \frac{(-1)^{n-1} (-1)^{n}}{n} = \frac{90}{n=1} \frac{(-1)^{n-1} (-1)^{n}}{n} = \frac{90}{n=1} \frac{(-1)^{n-1} (-1)^{n}}{n}$$

(b) Express the definite integral as an infinite series.

$$\int_{0}^{1} \ln(x^{3}+1)dx = \int_{0}^{1} \frac{\ln(x^{3}+1)dx}{n} dx = \int_{0}^{1} \frac{\ln$$



 $\leq M$ on the interval between the center, a, and the

point of approximation, x, then the remainder, $R_n(x)$, of the n^{th} degree Taylor polynomial, $T_n(x)$, satisfies the inequality:

$$|R_n(x)| \leq \frac{M}{(n+1)!} |\chi - \alpha|^{n+1}$$

(b) Use Taylor's Inequality to determine the number of terms of the Maclaurin series for e^x that should be used to estimate the number e with an error less than 0.6. Clearly justify your choice of M.

$$e^{x} = \frac{s_0}{s_0} \frac{x^n}{n!}$$

$$f(x) = e^{x}$$

$$f(x) = e^{x}$$

$$f(x) = e^{x}$$

$$f(x) = e^{x}$$

$$x = 1$$

$$|R_n(x)| \leq \frac{3}{(n+1)!} |x|^{n+1}$$
 when $x=1$

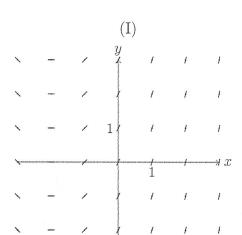
$$|R_{N}(1)| \le \frac{3}{(N+1)!} \le 0.6 = \frac{6}{10} = \frac{3}{5}$$

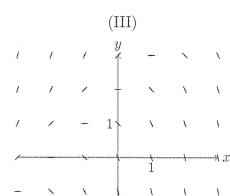
for
$$n=2$$
 $\frac{3}{(2+1)!} = \frac{3}{3!} = \frac{3}{6} < \frac{3}{5}$

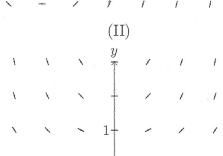
tuo terms of the MacLayrin series.

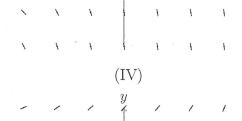
Page 7 of 9 Should be 486d.

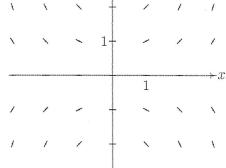
- 8. (8 points) Each of the following slope fields represents one of the following differential equations. Match each slope field to the corresponding differential equation.
 - (a) $\frac{dy}{dx} = \frac{xy}{2}$
- #
- (b) $\frac{dy}{dx} = y x 2$
 - I
- (c) $\frac{dy}{dx} = x + 2$ (d) $\frac{dy}{dx} = e^{x^2}$
- II

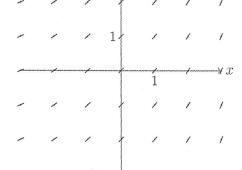












9. (6 points) Find the sum of the series.

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

$$ARCtan X = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \times \frac{2n+1}{2n+1}$$

$$T = ARctan | = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = |-\frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

10. (10 points) Assume we approximate the sum of the series

$$\sum_{n=0}^{\infty} \frac{2}{n^2}$$

by using the first 3 terms. Give an upper bound for the error involved in this approximation by using the Remainder Estimate for the Integral Test.

$$S_{3} = 2 + \frac{2}{4} + \frac{2}{9} = 2 + \frac{1}{2} + \frac{2}{9}$$

$$S = \frac{2}{5} = \frac{2}{h^{2}} \qquad S - S_{3} \le \int_{3}^{\infty} \frac{2}{x^{2}} dx$$

$$\int_{3}^{\infty} \frac{2}{x^{2}} dx = \lim_{b \to \infty} \frac{-2}{b} + \frac{2}{3} = \frac{2}{3}$$

$$S_{3} = \frac{2}{h^{2}} + \frac{2}{9} = 2 + \frac{1}{2} + \frac{2}{9}$$

$$\int_{3}^{\infty} \frac{2}{x^{2}} dx = \lim_{b \to \infty} \frac{-2}{b} + \frac{2}{3} = \frac{2}{3}$$

$$\int_{3}^{\infty} \frac{2}{x^{2}} dx = \lim_{b \to \infty} \frac{-2}{b} + \frac{2}{3} = \frac{2}{3}$$

$$\int_{3}^{\infty} \frac{2}{x^{2}} dx = \lim_{b \to \infty} \frac{2}{b} = \lim_{b \to \infty} \frac{2}{b} = \frac{2}{3}$$

$$\int_{3}^{\infty} \frac{2}{x^{2}} dx = \lim_{b \to \infty} \frac{2}{b} = \frac{2}{3}$$