Math 2300, Midterm 3
November 16, 2015

PRINT YOUR NAME:

PRINT INSTRUCTOR’S NAME:

Mark your section/instructor:

[0 Section 001 Albert Bronstein  9:00 - 9:50 Question | Points | Score
O Section 002 Andrew Healy 10:00 - 10:50 1 8
O Section 003 Joshua Frinak 11:00 - 11:50 2 12
O Section 004 Kevin Berg 12:00 - 12:50 3 12
O Section 005 Jeffrey Shriner 2:00 - 2:50 4 8
O Section 006 Megan Ly 3:00 - 3:50 5 12
O Section 007 Albert Bronstein ~ 8:00 - 8:50 6 12
O Section 008 Jonathan Lamar  1:00 - 1:50 7 12
[0  Section 009 Keli Parker 3:00 - 3:50 8 8
0  Section 010 Steven Weinell 4:00 - 4:50 9 6
O Section 011 Benjamin Cooper 8:00 - 8:50 10 10
O Section 880 Jordan Watts 8:00 - 8:50 Total: 100

o No calculators or cell phones or other electronic devices allowed at any time.

Show all your reasoning and work for full credit. Use full mathematical or English sentences.
e You have 90 minutes and the exam is 100 points.

¢ You do not need to simplify numerical expressions. For example leave fractions like 100/7 or expressions
like In(3)/2 as is.

e When done, give your exam to your instructor, who will mark your name off on a photo roster.

e We hope you show us your best work!



Math 2300 _ Midterm 3 November 16, 2015

1. (8 points) Match the following functions with their corresponding Maclaurin series:
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2. (12 points) (a) Find the radius of convergence of the power series E ( o ,)> . Show
T n=
n=1

all work in justifying your answer.
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) Find the interval of convergence. Show all work in justifying your answer.
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3. (12 points) Find the solution of the differential equation
ylz+1)+y =0

that satisfies the initial condition y(—2) = 1. Show all your work and write the

solution on the line given below.
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j\/ = = Y(x+1) d»y = — (x+)dx
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Solution: y = \e/
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4. (8 points) Given the following power series Z an(z —2)" we know that at z = 0 the

n=0
series converges and at x = 8 the series diverges. What do we know about the following

values?
(a) At z = 3 the series Z ap(x —2)" is:

n=0

(i) convergent

(ii) divergent

(iii) We cannot determine its convergence/divergence with the information given.

%
(b) At x = —4 the series Z a,(x —2)" is:
n=0
(1)
(i)
V\"e cannot determine its convergence/divergence with the information given.

convergent

divergent

(o]
(c) At z =9 the series Z an(z — 2)" is:
n=0

(i) convergent

divergent

(iii) We cannot determine its convergence/divergence with the information given.

(d) The following series Z a,, is:

n=0
@ convergent

(ii) divergent

(iii) We cannot determine its convergence/divergence with the information given.
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5. (12 points) (a) Write the definition for the n™* degree Taylor polynomial of f(x) cen-
tered at x = «a
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(b) Find the second degree Taylor polynomial for f(x) = In(sec(z)) centered at Z
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6. (1‘7 poir 1ts) (a) Express the function f(z) = In(1+ %) as a power series centered about

+><)f gf‘) X
L) = i( )"<><’3j i)

(b) Express the definite integral as an infinite series.
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7. (12 points) (a) Fill in the boxes to complete the statement of Taylor’s Inequality:

If

(_gélﬂ)( ) \ < M on the interval between the center, a, and the

point of approximation, x, then the remainder, R,(z), of the n*® degree Taylor

polynomial, T, (x), satisfies the inequality:

Bn(2)] <

M ot
D! [ @(l

(b) Use Taylor’s Inequality to determine the number of terms of the Maclaurin series

for e* that should be used to estimate the number e with an error less than 0.6.

Clearly justify your choice of A7.
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8. (8 points) Each of the following slope fields represents one of the following differential

equations. Match each slope field to the corresponding differential equation.
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9. (6 points) Find the sum of the series.
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10. (10 points) Assume we approximate the sum of the series

= g
;ﬁ
7=t

by using the first 3 terms. Give an upper bound for the error involved in this approxi-
mation by using the Remainder Estimate for the Integl al Test

g -2+FtE=2r="T

535——%’ ST S /’*O(X
n =l

Page 9 of 9

YA

,2 , -2, 2 - Z



